

Environmental Restoration Program

Long-term Operation and Maintenance First Quarter 2005 Report for Remediation Systems at ERP Sites SD-08, SD-10, and LF-13

CDRL A001G; Paragraph 6.2.2 (Site SD-08) CDRL A012A; Paragraph 3.2.2.2 (Site LF-13)

Prepared for Beale Air Force Base Beale Air Force Base, California 95903-1708

Project No. BAEY 2004-7008 Contract No. FA8903-04-D-8670, Task Order 0078 (Site SD-08)

Project No. BAEY 2004-7010 Contract No. F41624-01-D-8545; Task Order 0292 (Site SD-10)

Project No. BAEY 2004-7013 Contract No. F41624-01-D-8545 Task Order 0293 (Site LF-13)

Prepared By

Document No.: A001G1Q05-elec

July 15, 2005

2485 Natomas Park Drive, Suite 600 Sacramento, California 95833

REPORT [OCUMENTATION	I PAGE	Form Approved OMB No. 0704-0188
reviewing the collection of information. Send comments regarding this burn	den estimate or any other aspect of this collect	ction of information, including suggestions f	g data sources, gathering and maintaining the data needed, and completing and or reducing this burden, to Washington Headquarters Services, Directorate for
information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1. AGENCY USE ONLY (Leave blank)	2. REPORT DA July 15, 2005	ATE 3. REPORT T	rork Reduction Project (0704-0188), Washington, DC 20503. YPE AND DATES COVERED uary through March 2005
4. TITLE AND SUBTITLE Beale Air Force Base Environmental Restoration Program Long-term Operation and Maintenance F ERP Sites SD-08, SD-10, and LF-13 Task Order 0078, 0292, and 0293 CDRL A001G; Paragraph 6.2.2 (Site SD CDRL A012A; Paragraph 3.2.2.2 (Site L	First Quarter 2005 Report		5. FUNDING NUMBERS FA8903-04-D-8670
6. AUTHOR(S)			
7. PERFORMING ORGANIZATION NAME(S CH2M HILL	i) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
2485 Natomas Park Drive, Suite 600 Sacramento, California 95833	317652.03.03.12		
 9. SPONSORING/MONITORING AGENCY I HQ AFCEE/ERD 3207 Sidney Brooks, Building 532 Brooks City-Base, Texas 78235-5344 11. SUPPLEMENTARY NOTES 	NAME(3) AND ADDRESS(E	.	10. SPONSORING/ MONITORING AGENCY REPORT NUMBER
12a. DISTRIBUTION/AVAILABILITY STATEN	 IENT		12b. DISTRIBUTION COD
Statement A: "Approved for Public relea	se distribution is unlimit	red "	
This report presents performance evaluate	ions for the first quarter 2 Situ Bioremediation Trea [Site SD-08], BAEY 200	2005 historical monitori atment System at Site 10	g-term Operation and Maintenance Project. ing and operation data for the Biovent and 0, and the Site 13 Groundwater Treatment 192 [Site SD-10] BAEY 2004-7010, and
14. SUBJECT TERMS Long-term Operation and Maintenance F SD-08, SD-10, and LF-13	irst Quarter 2005 Report	for Remediation System	ms at ERP Sites 15. NUMBER OF PAGES
,			16. PRICE CODE
	CURITY ASSIFICATION OF THIS	19. SECURITY CLASSI ABSTRACT	FICATION OF 20. LIMITATION OF ABSTRACT
	sified	Unclassified	Unlimited

NSN 7540-01-280-5500

Standard Form 298 (rev. 2-89) Prescribed by ANSI Std 239-18

DESTRUCTION NOTICE - for classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction."

Preface

CH2M HILL is performing Environmental A-E Services for Long-term Operation and Maintenance at Environmental Restoration Program Site 08 (Project No. BAEY 2004-7008, Task Order [TO] 0078), Site 10 (Project No. BAEY2004-7010, TO 0292), and Site 13 (Project No. BAEY 2005-7001, TO 0260) at Beale Air Force Base, California. This work is being conducted under the Air Force Center for Environmental Excellence Contract No. FA8903-04-D-8670 (TO 0078), F41624-03-D-8595 (TO 260), and F41624-01-D-8545 (TO 292).

Key CH2M HILL project personnel for the *Long-term Operation and Maintenance First Quarter* 2005 *Report* completed under these contracts follow:

- Michael Wray Project Manager and Senior Review
- John Romie Project Manager
- Tricia Carter Environmental Engineer
- Alexa Stamets Environmental Engineer
- John Burke Environmental Engineer
- Matt Marlatt Environmental Engineer
- Brad Shearer Environmental Engineer
- Shandon Kissinger Project Assistant
- Kevin Roberts Field Technician
- Celeste Brandt Technical Editor

For quality control purposes, CH2M HILL staff have reviewed this report. The senior reviewers listed below, by virtue of their signatures, have concluded that this document meets or exceeds the deliverable requirements set forth in the Statement of Work.

Twile Wra	July 13, 2005
Mike Wray	Date

Contents

			Page
Prefa	ıce		v
Acro	nyms ai	nd Abbreviations	xi
Secti	on		
1.0	Intro	duction	1-1
	1.1	Objective	1-1
	1.2	Summary of First Quarter 2005 Activities	1-5
2.0	Site 8	Biovent Remediation System	2-1
	2.1	Site 8 Biovent System Background and Description	2-2
	2.2	Summary of System Startup Activities	
	2.3	Summary of System Operation and Monitoring Activities	2-2
		2.3.1 System Operation Data	
		2.3.2 System Monitoring Data	2 - 3
	2.4	Remedial Process Optimization Actions for Site 8 Biovent System	2 - 3
3.0	Site 8	Soil Vapor Extraction System	3-1
	3.1	Site 8 SVE System Background and Description	
	3.2	Summary of System Startup Activities	3-2
	3.3	Summary of System Operation and Monitoring Activities	3-2
		3.3.1 System Operation Data	3-3
		3.3.2 System Monitoring Data	3-3
	3.4	Remedial Process Optimization Actions for Site 8 SVE System	3-3
4.0	Site 1	0 Enhanced In Situ Bioremediation Treatment System	4-1
	4.1	Site 10 EISB Treatment System Background and Description	4-2
	4.2	Summary of System Startup Activities	4-2
	4.3	Summary of System Operation and Monitoring Activities	4 - 3
		4.3.1 System Operation Data	4- 3
		4.3.2 Groundwater Monitoring Data	4-3
	4.4	Remedial Process Optimization Actions for Site 10 EISB Treatment S	ystem4-3
5.0	Site 1	3 Groundwater Treatment System	5-1
	5.1	Site 13 GTS Background and Description	5-2
	5.2	GTS Optimization	5-2
	5.3	Summary of System Operation and Monitoring Activities	5 - 3
		5.3.1 System Operation Data	5 - 3
		5.3.2 System Monitoring Data	5-3
	5.4	Remedial Process Optimization Actions for Site 13 GTS	5 - 3
6.0	Work	ss Cited	6-1

Contents, Continued

		Page
Appe	ndices	
A B	Validated Analytical Data Site 10 Enhanced In Situ Bioremediation Treatment System Monitoring Data	
	Tables	
1-1	Beale AFB LTO&M Remediation Systems at ERP Sites	1-1
1-2	Summary of First Quarter 2005 Activities	1-5
2-1	ERP Site 8 Biovent System Summary	2-1
2-2	ERP Site 8 Biovent System Baseline and Startup Monitoring Data, First Quarter 2005	2-5
2-3	ERP Site 8 Biovent System - Operation, Monitoring, and Maintenance Activities, First Quarter 2005	2-7
2-4	ERP Site 8 Biovent System - Summary of Operations and Monitoring Data, First Quarter 2005	2-7
2-5	ERP Site 8 Biovent System - Biweekly Operating Data, First Quarter 2005	2-7
2-6	ERP Site 8 Biovent System - Optimization and Recommendations, First Quarter 2005	2-8
3-1	ERP Site 8 SVE System Summary	3-1
3-2	ERP Site 8 SVE System Baseline and Startup Monitoring Data, First Quarter 2005	3-4
3-3	ERP Site 8 SVE System - Operation, Monitoring, and Maintenance Activities, First Quarter 2005	3-5
3-4	ERP Site 8 SVE System - Summary of Operations and Monitoring Data, First Quarter 2005	3-5
3-5	ERP Site 8 SVE System - Biweekly Operations Data, First Quarter 2005	3-6
3-6	ERP Site 8 SVE System - Summary of Detected Soil Vapor Analytical Results, First Quarter 2005	3-7
3-7	ERP Site 8 SVE System - Optimization and Recommendations, First Quarter 2005	3-8
4-1	ERP Site 10 EISB Treatment System Summary	4-1

VIII RDD/051930020 (CAH3135.DOC)

Contents, Continued

		Page
4-2	ERP Site 10 EISB Treatment System - Transect 1 Well Identification and Classification	4-4
4-3	ERP Site 10 EISB Treatment System - Operation, Monitoring, and Maintenance Activities, First Quarter 2005	
4-4	ERP Site 10 EISB Treatment System – Summary of Operations and Monitoring Data, First Quarter 2005	4-6
4-5	ERP Site 10 EISB Treatment System – Groundwater Injected, First Quarter 2005	4-6
4-6	ERP Site 10 EISB Treatment System – Sodium Lactate Injected, First Quarter 2005	4-7
4-7	Summary of Detected Compounds in Well Samples, First Quarter 2005	4-8
4-8	ERP Site 10 EISB Treatment System - Optimization and Recommendations, First Quarter 2005	4-17
5-1	ERP Site 13 GTS System Summary	5-1
5-2	ERP Site 13 GTS, Extraction Well Flow Rates, First Quarter 2005	5-4
5-3	ERP Site 13 GTS, Summary of Weekly Operating Data, First Quarter 2005	5-5
5-4	ERP Site 13 GTS – Operation, Monitoring, and Maintenance Activities, First Quarter 2005	5-5
5-5	Summary of Detected Compounds in Extraction Well Samples, First Quarter 2005	5-7
5-6	ERP Site 13 GTS, Summary of Detected Compounds at the Treatment System, First Quarter 2005	5-8
5-7	ERP Site 13 GTS - Summary of 2005 Monitoring Data, First Quarter 2005	5-9
5-8	ERP Site 13 GTS - Optimization and Recommendations, First Quarter 2005	5-9

Contents, Continued

		Page
	Figures	
1-1	Location of Beale AFB Remediation Systems	1-3
2-1	Site 8 Biovent System Layout	2-9
2-2	Site 8 Biovent System Process Flow Diagram	2-11
3-1	Site 8 SVE System Layout	3-9
3-2	Site 8 SVE System Process Flow Diagram	3-11
4- 1	Site 10 EISB Treatment System Layout and Sample Locations, Transect 1	4-19
4-2	Site 10 EISB Treatment System Process Flow Diagram	4-21
5-1	Site 13 GTS Layout	5-11
5-2	Site 13 GTS Process Flow Diagram	5-13
5- 3	TCE Concentration Versus Time at Site 13 Extraction Wells	5-15
5-4	Cumulative TCE Mass Removed Site 13 GTS	5-19

Acronyms and Abbreviations

μg/L micrograms per liter

°F degrees Fahrenheit

AFB Air Force Base

AST aboveground storage tank

Base Beale Air Force Base bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylene

btoc below top of casing

D Deep

DCB dichlorobenzene
DCE dichloroethene

EISB enhanced in situ bioremediation

EPA U.S. Environmental Protection Agency

ERP Environmental Restoration Program

gpm gallons per minute

GTS Groundwater Treatment System

GTTS Groundwater Treatability Test System

HMI human-machine interface

ISR in situ respiration

LAW Law Environmental, Inc.

LEL lower explosive limit

LTO&M long-term operation and maintenance

MCL maximum contaminant level

MEK methylethyl ketone

mg/kg milligrams per kilogram

mg/L milligrams per liter

O&M operations and maintenance

PCE tetrachloroethylene

PLC progammable logic controller

ppbv parts per billion by volume

ppmv parts per million by volume

RPO remedial process optimization

S Shallow

SCADA supervisory control and data acquisition

scfm standard cubic feet per minute

SVE soil vapor extraction

TCA trichloroethane

TCE trichloroethylene

TECA tetrachloroethane

TPH total petroleum hydrocarbon

TPH-D diesel-range total petroleum hydrocarbons

TPH-G gasoline-range total petroleum hydrocarbons

VEW vapor extraction well

VGAC vapor-phase granular-activated carbon

VMP vapor monitoring point

VOC volatile organic compound

VW vent well

WDR waste discharge requirement

XII RDD/051930020 (CAH3135.DOC)

Introduction

The Long-term Operation and Maintenance (LTO&M) Project at Beale Air Force Base (AFB or Base) is performed through the Air Force Center for Environmental Excellence. This report provides a summary of the first quarter 2005 operation, monitoring, and maintenance of one biovent system, one soil vapor extraction (SVE) system, one enhanced in situ bioremediation (EISB) system, and one groundwater treatment system (GTS). Table 1-1 lists the remediation systems at the Environmental Restoration Program (ERP) sites, and Figure 1-1 shows the locations of the systems.

TABLE 1-1

Beale AFB LTO&M Remediation Systems at ERP Sites LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site and System Names

Biovent System

Site 8 Former J-57 Test Cell Biovent System

Soil Vapor Extraction System

Site 8 Former J-57 Test Cell SVE System

Enhanced in Situ Bioremediation Treatment System

Site 10 North J-58 Test Cell EISB Treatment System

Groundwater Treatment System

Site 13 Landfill No. 1 GTS

1.1 Objective

This quarterly report updates the Air Force Center for Environmental Excellence, Beale AFB, and regulatory agencies on the operating status of the remediation systems at Beale AFB. This quarterly report presents the data collected during first quarter 2005, and summarizes selected historical and current monitoring data for the systems. (Sections 2.0, 3.0, 4.0, and 5.0 present tables and figures referenced in each subsection at the end of each section.)

This report is organized as follows:

- **Section 1.0 Introduction**. This section provides the objective of the report, a summary of significant operations and maintenance (O&M) activities conducted during first quarter 2005, and recommended activities for subsequent quarters.
- Section 2.0 Site 8 Biovent Remediation System. This section provides a summary of first quarter 2005 operations and monitoring data, and recommendations for upcoming activities at the Site 8 biovent system.

- Section 3.0 Site 8 Soil Vapor Extraction System. This section provides a summary of first quarter 2005 operations and monitoring data, and recommendations for upcoming activities for the Site 8 SVE system.
- Section 4.0 Site 10 Enhanced In Situ Bioremediation Treatment System. This section provides a summary of first quarter 2005 operations and monitoring data, and recommendations for upcoming activities for the Site 10 EISB treatment system.
- Section 5.0 Site 13 Groundwater Treatment System. This section provides a summary of first quarter 2005 operations and monitoring data, and recommendations for upcoming activities for the Site 13 GTS.
- **Section 6.0 Works Cited.** This section provides complete reference information for all works cited in this report.
- Appendix A Validated Analytical Data. This appendix includes laboratory results for soil vapor, groundwater, other samples, and groundwater treatment samples collected during first quarter 2005.
- Appendix B Site 10 Enhanced In Situ Bioremediation Treatment System Monitoring Data. This appendix discusses the analytical results and field analysis of groundwater samples collected at Site 10 during first quarter 2005.

1-2 RDD/051930020 (CAH3135.DOC)

1.2 Summary of First Quarter 2005 Activities

Table 1-2 presents a summary of the LTO&M activities during first quarter 2005, with recommendations for actions during second quarter 2005.

TABLE 1-2
Summary of First Quarter 2005 Activities
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

System Name	Summary of Activities for First Quarter 2005	Recommended Activities for Second Quarter 2005
Site 8 Biovent System	Collected baseline monitoring data, then started up biovent system for routine operation and monitoring.	Perform routine operation and monitoring. Perform baseline in situ respiration (ISR) test.
Site 8 SVE System	Collected baseline monitoring data, then started up SVE system for routine operation and monitoring. Shut down system because of flow restriction in lag vapor-phase granular-activated carbon (VGAC) vessel. Collected pre-, mid-, and post-VGAC samples from the combined extracted soil vapor. All samples were analyzed for volatile organic compounds (VOC) by U.S. Environmental Protection Agency (EPA) Method TO-14 and total petroleum hydrocarbons gasolinerange organics (TPH-G) using EPA Method SW8015M.	Install new lag VGAC vessel and restart system for routine operation and monitoring. Collect pre-, mid-, and post-VGAC samples from the combined extracted soil vapor. Perform baseline ISR test.
Site 10 EISB Treatment System	Started up system for routine operation and monitoring. Dosed injection wells with citric acid to mitigate biofouling. Reduced lactate injection to prevent biofouling. Replaced flow control valves and installed check valves to prevent backflow from injection wells. Replaced one extraction pump.	Remove air relief valves from each injection well. Perform aquifer test and update Site 10 groundwater model. Install a pre-treatment vessel to reduce dissolved oxygen concentrations in injected groundwater. Install back pressure valves at injection point for sodium lactate. Install inline static mixers downstream of sodium lactate injection point.

TABLE 1-2 Summary of First Quarter 2005 Activities LTO&M First Quarter 2005 Report, Beale Air Force Base, California

System Name	Summary of Activities for First Quarter 2005	Recommended Activities for Second Quarter 2005			
Site 13 GTS	Restarted the GTS, and performed routine operation and monitoring. Conducted monthly monitoring of the GTS influent and effluent. Collected groundwater samples from 11 extraction wells. Analyzed	Perform routine operation and monitoring. Conduct monthly monitoring of the GTS influent and effluent. Perform semiannual sampling of GTS extraction wells. Analyze all groundwater samples for VOCs using EPA Method SW8260B.			
Replaced pump and motor in 13C001MW, and pressure tested wellhead at 13C001MW. Tested meter operations, and pump and motor operations on system		Perform hydrostatic testing of Hutchinson Creek crossing. Restore operation of all 12 extraction			
	13C001MW, and pressure tested	wells after water levels subside in Base aeratio pond. Replace flow totalizers at 13C050EW and 13O005EW.			
	and motor operations on system	Add programming to record run-time hours for extraction wells and major process equipment.			
	oxiliadila i i i i i i i i i i i i i i i i i i				
	Adjusted programming to record daily system flow rates.				

1-6 RDD/051930020 (CAH3135.DOC)

Site 8 Biovent Remediation System

Section 2.0 provides a summary of the Site 8 biovent remediation system and includes the following information:

- System background and site description
- Summary of biovent system startup
- System operation and monitoring data collected and maintenance activities conducted during first quarter 2005
- Remedial Process Optimization (RPO) actions
- Site plan presenting the biovent system layout

Table 2-1 summarizes historical information and selected current operating data pertaining to the Site 8 biovent remediation system. A complete summary of previous site investigations and characterization, extent of contamination, and lithology for Site 8 was provided in the *Draft Site 8 SVE and Biovent System Operation and Maintenance Plan* (CH2M HILL, 2004b).

TABLE 2-1 ERP Site 8 Biovent System Summary LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	Summary Description				
Site location	Former J-57 Test Cell, near the northern end of the flightline, in the western portion of the site (see Figure 2-1).				
Source of contamination	Fueling and defueling operations, spills, leaks, and runoff associated with jet engine testing.				
Contaminants of concern	TPH, including TPH-G, TPH as diesel (TPH-D), and TPH as jet fuel.				
System history	 1993: TPH and benzene detected in shallow vadose zone of the former aboveground storage tank (AST) area at concentrations of 336,000 and 10,000 parts per billion by volume (ppbv), respectively (Law Environmental, Inc. [LAW], 1996). 				
	 1999: TPH detected at 12,000,000 ppbv at 60 feet below ground surface (bgs) in the former AST area. Benzene and toluene were detected at 43,000 and 120,000 ppbv, respectively, at 60 feet bgs (CH2M HILL, 1999). 				
	 2003: Monitoring well 08C010MW installed beneath the former AST area. TPH-D detected in soil at 249.79 milligrams per kilogram (mg/kg) at 85 feet bgs. Benzene detected in shallow soil vapor at concentrations above the cleanup goal (69 ppbv) (CH2M HILL, 2004c). 				
	 November 2004: Biovent system installed by CH2M HILL. System includes two vent well (VW) pairs and five dual-screen vapor monitoring points (VMP) (CH2M HILL, 2004b). 				
	February 2005: Biovent system becomes operational.				
Depth range of VW screen intervals	30 to 80 feet.				
Depth range of VMP screen Intervals	35 to 75 feet.				
Air injection flow rate	Blower maximum rating: 92 standard cubic feet per minute (scfm).				

2.1 Site 8 Biovent System Background and Description

The ERP Site 8 Former J-57 Test Cell is located in the northwest portion of Beale AFB near the northern end of the flightline area. Open fields and grazing lands surround Site 8. As shown on Figure 2-1, the site includes two concrete pads connected by asphalt paving, a former jet fuel AST, a septic leachfield, and a surface water drainage ditch. Figure 2-2 presents a process flow diagram of the Site 8 biovent system.

A biovent system and an SVE system are located at Site 8. The following sections address the Site 8 biovent system, and Section 3.0 addresses the Site 8 SVE system.

2.2 Summary of System Startup Activities

Baseline monitoring data for the Site 8 biovent system were collected on January 6 and February 1, 2005. The January 6 data were collected prior to startup of the Site 8 SVE system. The SVE system was shut down on January 27, 2005, and a second round of monitoring data were collected on February 1, 2005, to confirm that baseline conditions had been re-established. Table 2-2 presents the baseline data collected on January 6 and February 1, 2005.

The baseline data showed a background vacuum at all monitoring locations. The source of the vacuum is unknown. Oxygen concentrations were near-atmospheric at all locations except 08C043VW Shallow (S). Biodegradation is occurring at 08C043VWS, but is not oxygen-limited (i.e., oxygen concentrations were greater than 5 percent). Elevated VOC concentrations (5.1 to 91 parts per million by volume [ppmv]) were measured at 08C042VWS, 08C043VWS, 08C043VW Deep (D), 08C034VMP (S and D), and 08C035VMPS using a flame ionization detector. The highest VOC concentration (91 ppmv) was recorded at 08C043VWS. Methane (as a percent of the lower explosive limit [LEL]) was not detected at any of the monitoring locations.

The biovent system was started up on February 1, 2005, after the baseline readings were collected. After 4 hours of operation, pressure measurements were taken at the VWs and VMPs. The data are presented in Table 2-2. Positive pressures were recorded at each VMP screen interval.

After 1 week of operation, monitoring data were collected on February 8, 2005 (see Table 2-2). The data showed near-atmospheric oxygen concentrations at all locations. VOC concentrations remained elevated at 08C043VW (S and D), 08C034VMP (S and D), and 08C035VMPS. The biovent system was shut down on February 8, 2005, after the monitoring data were collected. Because of ongoing operational difficulties at the Site 8 SVE system, the Site 8 biovent system was restarted on February 16, 2005, and operated for the rest of first quarter 2005. First quarter operation and monitoring activities are discussed in Section 2.3.

2.3 Summary of System Operation and Monitoring Activities

Table 2-3 presents the routine and nonroutine operation, monitoring, and maintenance activities conducted during first quarter 2005, and the activities planned as part of ongoing operation and monitoring of the Site 8 biovent system.

2-2

2.3.1 System Operation Data

Table 2-4 summarizes operations and monitoring data for the Site 8 biovent system. Table 2-5 presents biweekly operations data.

2.3.2 System Monitoring Data

Quarterly monitoring was not performed during first quarter 2005, following system startup activities. Regular quarterly monitoring during system operation will begin in second quarter 2005.

2.4 Remedial Process Optimization Actions for Site 8 Biovent System

Table 2-6 presents a summary of RPO actions planned for completion in second quarter 2005, for the Site 8 biovent system.

This page intentionally left blank.

2-4 RDD/051930020 (CAH3135.DOC)

TABLE 2-2
ERP Site 8 Biovent System Baseline and Startup Monitoring Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

	Screen January 6, 2005			February 1, 2005			February 1, 2005	Fel	February 8, 2005								
Location	Interval (feet bgs)	Vacuum (inches of water)	Oxygen (%)	Carbon Dioxide (%)	VOCs (ppmv)	Methane LEL (%)	Vacuum (inches of water)	Oxygen (%)	Carbon Dioxide (%)	VOCs (ppmv)	Methane LEL (%)	Pressure (inches of water)	Pressure (inches of water)	Oxygen (%)	Carbon Dioxide (%)	VOCs (ppmv)	Methane LEL (%)
08C034VMPS	35 to 45	1.8	20.9	0.0	22.0	0.0	1.4	20.8	0.0	28.0	0.0	0.9	0.5	20.9	0.0	28.0	0.0
08C034VMPD	65 to 75	1.9	20.7	0.0	6.0	0.0	1.4	20.8	0.0	8.0	0.0	0.7	0.3	20.9	0.0	8.0	0.0
08C035VMPS	35 to 45	1.9	20.7	0.0	16.0	0.0	1.7	20.7	0.0	18.0	0.0	0.7	0.3	20.7	0.0	18.0	0.0
08C035VMPD	65 to 75	1.9	20.8	0.0	0.0	0.0	1.7	20.8	0.0	0.0	0.0	0.5	0.1	20.9	0.0	0.0	0.0
08C036VMPS	35 to 45	1.8	20.8	0.0	0.0	0.0	1.7	20.8	0.0	0.0	0.0	0.5	0.2	20.9	0.0	0.0	0.0
08C036VMPD	65 to 75	1.9	20.9	0.0	0.0	0.0	1.7	20.9	0.0	0.0	0.0	0.2	0.2	20.9	0.0	0.0	0.0
08C038VMPS	35 to 45	1.5	20.7	0.0	0.0	0.0	1.6	20.7	0.0	0.0	0.0	0.5	0.3	20.7	0.0	0.0	0.0
08C038VMPD	65 to 75	1.6	20.9	0.0	0.0	0.0	1.7	20.8	0.0	0.0	0.0	0.6	0.3	20.8	0.0	0.0	0.0
08C039VMPS	35 to 45	1.7	20.9	0.0	0.0	0.0	1.3	20.8	0.0	0.0	0.0	0.2	0.4	20.8	0.0	0.0	0.0
08C039VMPD	65 to 75	1.7	20.8	0.0	0.0	0.0	1.1	20.7	0.0	0.0	0.0	0.2	0.1	20.8	0.0	0.0	0.0
08C042VWS	30 to 50	1.7	20.7	0.0	6.4	0.0	1.6	20.8	0.0	7.0	0.0	4.6	4.1	20.9	0.0	0.0	0.0
08C042VWD	60 to 80	1.8	20.8	0.0	0.0	0.0	1.7	20.8	0.0	0.0	0.0	4.6	4.0	20.8	0.0	0.0	0.0
08C043VWS	30 to 50	1.8	17.6	1.2	88.0	0.0	1.7	17.5	1.1	91.0	0.0	4.8	4.2	20.9	0.0	89.0	0.0
08C043VWD	60 to 80	1.8	20.7	0.0	5.1	0.0	1.7	20.8	0.0	6.0	0.0	5.1	4.3	20.8	0.0	5.0	0.0

TABLE 2-3
ERP Site 8 Biovent System – Operation, Monitoring, and Maintenance Activities, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Description	Date	Planned Activity for Next Period	Comment
Routine Activity			
Performed biweekly monitoring.	Biweekly monitoring was performed twice during first quarter 2005.	Biweekly monitoring.	
Performed quarterly monitoring.	Quarterly monitoring was not performed during first quarter 2005.	Quarterly monitoring.	Regular quarterly monitoring during system operation will begin in second quarter 2005.
Nonroutine Activity			
None.			

TABLE 2-4ERP Site 8 Biovent System – Summary of Operations and Monitoring Data, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California*

Parameter	Value	Comment
VWs operating (average flow rate [scfm])	08C042VWS (21), 08C042VWD (22), 08C043VWS (15), and 08C043VWD (19)	Well flow rates were measured during startup activities on February 1 and 8, 2005.
System discharge pressure (inches of water)	17 to 18	See Table 2-5.
Hours operated (hours)	1,206	
Percent uptime (percent)	56	System uptime was measured between January 1 and March 31, 2005.
Average system flow rate (scfm)	26	
Depth to groundwater (average)	97 feet bgs	Depth to groundwater was measured during January 2005, at all seven monitoring wells as part of the Basewide Groundwater Monitoring Program.

TABLE 2-5ERP Site 8 Biovent System – Biweekly Operating Data, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California*

Date	Time	Blower Status	Hours Gauge	Pressure after Blower (inches of water)	Temperature after Blower (°F)	System Flow (scfm)	Comment
03/09/2005	8:20 AM	On	640.3	17.6	87	26	
03/23/2005	8:13 AM	On	976.2	17.7	80	26	

Note:

[°]F = degrees Fahrenheit

TABLE 2-6
ERP Site 8 Biovent System – Optimization and Recommendations, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Planned RPO Actions

Activity	Status	Date	Comment
Perform baseline ISR test.		Second quarter 2005.	Shut down system in April 2005 for baseline ISR testing. Restart system for routine operation at conclusion of test.
Measure flow rates to VWs.		Second quarter 2005.	Begin measuring flow rates to VWs during biweekly monitoring.

2-8 RDD/051930020 (CAH3135.DOC)

FIGURE 2-2 SITE 8 BIOVENT SYSTEM PROCESS FLOW DIAGRAM LTO&M FIRST QUARTER 2005 REPORT

LTO&M FIRST QUARTER 2005 REPORT BEALE AIR FORCE BASE, CALIFORNIA CH2MHILL

Site 8 Soil Vapor Extraction System

Section 3.0 provides a summary of the Site 8 SVE remediation system and includes the following information:

- System background and site description
- Summary of SVE system startup
- System operation and monitoring data collected and maintenance activities conducted during first quarter 2005
- RPO actions
- Site plan presenting the SVE system layout

Table 3-1 summarizes historical information and selected current operating data pertaining to the Site 8 SVE remediation system. Laboratory analyses performed on soil vapor samples are provided in Appendix A. A complete summary of previous site investigations and characterization, extent of contamination, and lithology for Site 8 was provided in the *Draft Site 8 SVE and Biovent System Operation and Maintenance Plan* (CH2M HILL, 2004b).

TABLE 3-1
ERP Site 8 SVE System Summary
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	Summary Description
Site location	Former J-57 Test Cell, near the northern end of the flightline, in the eastern portion of the site (see Figure 3-1).
Source of contamination	Fueling and defueling operations, degreasing activities, spills, leaks, and runoff associated with jet engine testing.
Contaminants of concern	Trichloroethylene (TCE); TPH; and benzene, toluene, ethylbenzene, and xylene (BTEX).
System history	 1993: TCE and TPH detected in shallow vadose zone between concrete test pads at 4,100 and 5,000 ppbv, respectively. TPH detected in the shallow vadose zone of the leachfield area at maximum concentration of 167,000 ppbv. BTEX compounds also detected (LAW, 1996).
	 1999: TCE and TPH detected in the test pad area at maximum concentrations of 34,000 and 24,000 ppbv, respectively. TPH detected in the leachfield area at maximum concentration of 270,000 ppbv. TPH concentrations highest near suspected locations of leachfield lines. TCE and benzene detected in leachfield area above the cleanup goals (350 and 69 ppbv, respectively) (CH2M HILL, 1999).
	 2003: TCE detected in the test pad area at maximum concentration of 11,600 ppbv. Results of a GORE-SORBER® survey showed a TCE "hot spot" between the concrete test pads. Benzene detected in shallow soil vapor in leachfield area at 89.2 ppbv (CH2M HILL, 2004c).
	 November 2004: SVE system installed by CH2M HILL to remediate TCE, BTEX, and TPH contamination in the test pad and leachfield areas. System includes two 2,000-pound VGAC units, two vapor extraction well (VEW) pairs, and seven VMPs (two S/D pairs and five nested completions) (CH2M HILL, 2004d).
	 January 2005: SVE system started up and then shut down because of flow restriction in lag VGAC vessel.
Depth range of VEW screen interva	s 30 to 80 feet.
Depth range of VMP screen Interval	s 9 to 90 feet.

3.1 Site 8 SVE System Background and Description

The ERP Site 8 Former J-57 Test Cell is located in the northwest portion of Beale AFB near the northern end of the flightline area. Open fields and grazing lands surround Site 8. The site includes two concrete pads connected by asphalt paving, a former jet fuel AST, a septic leachfield, and a surface water drainage ditch (see Figure 3-1). The following sections address the Site 8 SVE system. Figure 3-2 presents a process flow diagram of the Site 8 SVE system.

3.2 Summary of System Startup Activities

Baseline monitoring data for the Site 8 SVE system were collected on January 6 and January 17, 2005. The data are presented in Table 3-2. The baseline data showed a background vacuum at all monitoring locations. The source of the vacuum is unknown. Oxygen concentrations were near-atmospheric at all locations. Elevated VOC concentrations (11 to 87 ppmv) were measured at 08C040VEW (S and D) and 08C041VEWS using a flame ionization detector. The highest VOC concentration (87 ppmv) was recorded at 08C041VEWS. Methane (as a percent of the LEL) was not detected at any of the monitoring locations.

With the biovent system off, the SVE system was started up on January 24, 2005. After 8 hours and 24 hours of operation, vacuum measurements were taken at the VEWs and VMPs. The data are presented in Table 3-2. After 8 hours, vacuums were recorded at 10 of the 18 VMP screen intervals. After 24 hours, vacuums were recorded at all VMP screen intervals.

The SVE system operated for approximately 74 hours, until it was shut down on January 27, 2005, because of a flow restriction in the lag VGAC vessel. The restriction was identified after high amperages were measured at the blower motor, and elevated pressures were measured at the blower exit and between the two VGAC vessels. The restriction was caused by inadequate outflow piping inside the lag vessel. The system remained off for the rest of first quarter 2005.

A new lag carbon vessel containing 2,000 pounds of virgin VGAC was installed on April 1, 2005. System testing confirmed that the flow restriction was eliminated. The SVE system was successfully restarted on April 4, 2005. Operation and monitoring of the retrofitted system will be described in the *LTO&M Second Quarter* 2005 Report.

3.3 Summary of System Operation and Monitoring Activities

Table 3-3 presents the routine and nonroutine operation, monitoring, and maintenance activities conducted during first quarter 2005, and the activities planned as part of ongoing operation and monitoring of the Site 8 SVE system.

3-2

3.3.1 System Operation Data

Table 3-4 summarizes the major Site 8 SVE system operational parameters. Table 3-5 presents the biweekly system operations data. The system operated with the dilution valve partially open to reduce the amperage at the blower motor.

3.3.2 System Monitoring Data

Quarterly monitoring was not performed during first quarter 2005 following system startup activities. Regular quarterly monitoring during system operation will begin in second quarter 2005.

Pre-, mid-, and post-VGAC samples of the combined extracted soil vapor were collected on January 24, 2005, after 8 hours of operation. All samples were analyzed for VOCs using EPA Method TO-14 and for TPH-G using EPA Method SW8015M. Table 3-6 summarizes the detected results. Complete analytical results are provided in Appendix A for first quarter 2005.

The estimated mass removal rate on January 24, 2005, was 21 pounds per month of operation, and approximately 2.1 pounds of VOCs were extracted during first quarter 2005. TPH-G was not detected in the extracted soil vapor samples. Approximately 0.004 pound of VOCs was discharged from the SVE exhaust stack during first quarter 2005.

3.4 Remedial Process Optimization Actions for Site 8 SVE System

Table 3-7 presents a summary of RPO actions planned for completion in second quarter 2005, for the Site 8 SVE system.

TABLE 3-2
ERP Site 8 SVE System Baseline and Startup Monitoring Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

		January 6 and January 17, 2005						
Location	Screen Interval (feet bgs)	Vacuum (inches of water)	Oxygen (%)	Carbon Dioxide (%)	VOCs (ppmv)	Methane LEL (%)	January 24, 2005 Vacuum (inches of water)	January 25, 2005 Vacuum (inches of water)
08C009MW/VMP ^a	10	1.8	20.8	0.1	0.0	0.0	0.2	0.9
08C009MW/VMP ^a	25	1.6	20.8	0.0	0.0	0.0	0.8	1.3
08C009MW/VMP ^a	40	1.8	20.9	0.0	0.0	0.0	0.6	1.9
08C009MW/VMP ^a	55	1.6	20.9	0.0	0.0	0.0	0.8	2.0
08C009MW/VMP ^a	70	1.8	20.8	0.0	0.0	0.0	0.1	0.4
08C009MW/VMP ^a	85	1.6	20.9	0.0	0.0	0.0	0.1	0.8
08C012VMPS	20 to 40	1.9	20.8	0.0	0.0	0.0	0.0	0.6
08C012VMPD	60 to 80	1.9	20.7	0.0	0.0	0.0	0.0	0.9
08C013VMPS	15 to 35	1.8	20.8	0.0	0.0	0.0	0.3	0.8
08C013VMPD	70 to 90	1.8	20.9	0.0	0.0	0.0	0.3	0.6
08C031VMPS	35 to 45	2.1	20.9	0.0	0.0	0.0	0.1 ^b	0.4
08C031VMPD	65 to 75	1.9	20.9	0.0	0.0	0.0	0.3	0.4
08C032VMPS	35 to 45	1.7	20.9	0.0	0.0	0.0	0.3	0.7
08C032VMPD	65 to 75	1.9	20.8	0.0	0.0	0.0	0.1 ^b	0.5
08C033VMPS	35 to 45	1.8	20.7	0.0	0.0	0.0	0.0	0.3
08C033VMPD	65 to 75	1.8	20.7	0.0	0.0	0.0	0.6 ^b	0.3
08C037VMPS	35 to 45	2.0	20.9	0.0	0.0	0.0	0.0	0.5
08C037VMPD	65 to 75	1.9	20.9	0.0	0.0	0.0	0.2 ^b	0.2
08C040VEWS	30 to 50	2.0	20.8	0.0	11.0	0.0	27.5	27.9
08C040VEWD	60 to 80	2.0	20.7	0.0	23.0	0.0	28.2	28.9
08C041VEWS	30 to 50	1.7	20.9	0.0	87.0	0.0	6.7	7.1
08C041VEWD	60 to 80	1.9	20.8	0.0	0.0	0.0	7.5	8.0

^aBaseline data at 08C009MW/VMP was collected on January 17, 2005.

^bPositive pressure recorded at this location on January 24, 2005.

TABLE 3-3
ERP Site 8 SVE System – Operation, Monitoring, and Maintenance Activities, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Description	Date	Planned Activity for Next Period	Comment
Routine Activity			
Biweekly and quarterly monitoring.	Biweekly monitoring was performed four times. Quarterly monitoring was not performed during first quarter 2005 following system startup.	Biweekly and quarterly monitoring.	Regular biweekly and quarterly monitoring during system operation will resume in second quarter 2005.
Collected pre-, mid-, and post-VGAC samples from the combined extracted soil vapor.	January 24, 2005.	Collect pre-, mid-, and post-VGAC samples from the combined extracted soil vapor.	Collect quarterly pre-, mid-, and post-VGAC samples from the combined extracted soil vapor during second quarter 2005. Collect soil vapor samples from operating VEWs during third or fourth quarter 2005.
Nonroutine Activity			
Shut down SVE system because of a flow restriction in the lag VGAC vessel.	January 27, 2005.	Install a new lag carbon vessel containing 2,000 pounds of virgin VGAC. Restart SVE system.	A new lag VGAC vessel was installed on April 1, 2005. The SVE system was successfully restarted on April 4, 2005.

TABLE 3-4
ERP Site 8 SVE System – Summary of Operations and Monitoring Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	Value	Comment
Extraction wells operating	08C040VEW (S and D) and 08C041VEW (S and D)	100 percent open.
System vacuum (inches of water)	35 to 38	See Table 3-5.
Hours operated	74	
Percent uptime	3 ^a	See Table 3-5.
Total system flow rate (scfm)	409 to 563 ^b	See Table 3-5.
Total VOC concentration in extracted soil vapor (ppmv)	5.4	
Estimated VOC mass extraction rate (pounds per month)	21°	
Estimated mass of VOCs extracted (pounds)	2.1	
Estimated cumulative mass of total VOCs extracted (excluding TPH) (pounds)	2.1	
Knockout water transported to GTS (gallons)	0	See Table 3-5.
Depth to groundwater (feet bgs) (average) ^d	97 (January 2005)	

^aMeasured between January 1 and March 31, 2005.

^bMeasured at system exhaust stack and includes dilution air.

^cCalculated using an estimated system flow rate without dilution air of 234 scfm.

^dDepth to groundwater was measured during January 2005, at all seven monitoring wells as part of the Basewide Groundwater Monitoring Program.

TABLE 3-5
ERP Site 8 SVE System – Biweekly Operations Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

D	_	Hours	Blower	Vacuum before Filter	Flow Rate	•	
Date	Time	Gauge	Status	(inches of water)	(scfm) ^a	(gallons)	Comment
01/24/05	7:00 AM	6,841.4	Restart	37.3	525	0	System was started up.
01/24/05	8:00 AM	6,842.4	On	36.3	409	0	
01/24/05	3:00 PM	6,850.3	On	35.5	563	0	
01/25/05	6:55 AM	6,865.3	On	35.2		0	
01/27/05		6,915.8	Off				System was shut down because of a flow restriction in the lag VGAC vessel.

^aTotal system flow rate including dilution air.

Note:

-- = data not recorded

TABLE 3-6
ERP Site 8 SVE System – Summary of Detected Soil Vapor Analytical Results, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Sample Date	Sample Location	Analyte	Result (ppbv)
1/24/2005	Pre-carbon	1,1,2,2-TECA	34.6 J
		1,2,4-Trichlorobenzene	22.9 J
		1,2,4-Trimethylbenzene	8.52 J
		1,2-Dichlorobenzene	16.5 J
		1,3,5-Trimethylbenzene	6.92 J
		1,3-DCB	11.7 J
		1,4-DCB	12.8 J
		Benzene	3.2 J
		Chloroform	5.33 J
		Chloromethane	6.39 J
		Hexachlorobutadiene	26.1 J
		Methylene chloride	107 J
		Styrene	4.79 J
		TCE	5,240 J
		trans-1,3- Dichloropropene	2.83 R
		Trichlorofluoromethane	3.2 J
1/24/2005	Mid-carbon	1,1,2,2-TECA	0.43 J
		1,2,4-Trichlorobenzene	1.45 J
		1,2,4-Trimethylbenzene	0.65 J
		1,2-Dichlorobenzene	0.78 J
		1,3,5-Trimethylbenzene	0.35 J
		1,3-DCB	0.6 J
		1,4-DCB	0.75 J
		Benzene	0.58 J
		Chlorobenzene	0.25 J
		Chloromethane	0.9 J
		Ethylbenzene	0.58 J
		m,p-Xylene	1.98 J
		Methylene chloride	17.2 J
		o-Xylene	0.7 J
		Styrene	0.48 J
		TCE	0.8 J
		Toluene	2.5 J
		trans-1,3- Dichloropropene	0.13 R
		Trichlorofluoromethane	0.5 J

TABLE 3-6
ERP Site 8 SVE System – Summary of Detected Soil Vapor Analytical Results, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Sample Date	Sample Location	Analyte	Result (ppbv)
1/24/2005	Post-carbon	1,2,4-Trichlorobenzene	0.36 J
		Benzene	0.45 J
		Chloromethane	0.89 J
		m,p-Xylene	0.74 J
		Methylene chloride	5.33 J
		TCE	1.61 J
		Toluene	1.07 J
		trans-1,3- Dichloropropene	0.12 R

Notes:

Results shown in **bold** exceed cleanup goal.

DCB = dichlorobenzene

J = The analyte was positively identified, but the quantitation is an estimate.

R = The data are unusable because of deficiencies in the ability to analyze the sample and meet quality

control criteria.

TECA = tetrachloroethane

TABLE 3-7
ERP Site 8 SVE System – Optimization and Recommendations, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Activity	Status	Date	Comment
Perform baseline ISR test.		Second quarter 2005.	Shut down system in April 2005, for baseline ISR testing. Restart system for routine operation at conclusion of test.

3-8 RDD/051930020 (CAH3135.DOC)

SECTION 4.0

Site 10 Enhanced In Situ Bioremediation Treatment System

Section 4.0 provides a summary of the Site 10 EISB treatment system and includes the following information:

- System background and site description
- Summary of EISB treatment system startup
- System operation and monitoring data collected and maintenance activities conducted during first quarter 2005
- RPO actions
- Site plan presenting the EISB treatment system layout

Table 4-1 summarizes historical information and selected current operating data regarding the Site 10 EISB treatment system. Laboratory analyses performed during first quarter 2005 are provided in Appendix B.

TABLE 4-1 ERP Site 10 EISB Treatment System Summary LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site Parameter	Summary Description					
Site location	East of Doolittle Drive and the flightline area (see Figure 4-1).					
Source of contamination	Aircraft maintenance and testing activities.					
Contaminants of concern	Chlorinated solvents.					
System history	2002: Remedial investigation determined chlorinated solvents in upper groundwater zone required remediation.					
	2003: Draft Final Record of Decision selected EISB as remedy for groundwater source area and monitored natural attenuation for distal portion of solvent plume.					
	2003 to 2004: Conducted a bench-scale and pilot-scale testing of bioremediation technology.					
y	January 2005: Completed Phase 1 of the EISB treatment system.					
Depth of well screen intervals	35 to 70 feet bgs at Site 10.					
Depth to groundwater	Approximately 40 feet bgs.					

4.1 Site 10 EISB Treatment System Background and Description

The ERP Site 10 North J-58 Test Cell is located in the northwestern part of Beale AFB, east of Doolittle Drive and the flightline area (see Figure 4-1). In 2004, construction of Phase 1 of the full-scale EISB treatment system at Site 10 was installed. Figure 4-2 presents a process flow diagram of the Site 10 EISB treatment system. EISB is being used to treat chlorinated VOC contamination in the groundwater source area (defined as groundwater with TCE concentrations greater than 100 micrograms per liter [μ g/L]). The remedial action objectives are described in Section 5.6 of the Site 10 Remedial Action Summary Report (CH2M HILL, 2005).

4.2 Summary of System Startup Activities

The EISB treatment system was completed on January 13, 2005, and groundwater recirculation began on January 14, 2005. The EISB treatment system currently consists of four extraction wells and eight injection wells. System performance and compliance is assessed with 10 performance monitoring wells and seven compliance monitoring wells (see Table 4-2). As shown on Figure 4-1, all compliance monitoring wells are located outside the transition zone for the operating EISB treatment system.

The Site 10 EISB treatment system was recirculating water nearly continuously from January 14 through March 31, 2005. The site lost power over the weekend of February 19, 2005. The power was restored on Monday, February 21, 2005.

Biofouling was first observed in 10C037RW and 10C043RW on February 10, 2005. These wells were injecting groundwater under pressure. To reduce the risk of groundwater leaking out of the well, flow to these wells was reduced. On February 16, 2005, all eight injection wells were dosed with citric acid to mitigate biofouling. The discharge rate of lactate from each of the four chemical metering pumps was recalibrated at the injection point. The discharge rates were consistently higher than the original calibration performed on January 20, 2004. Therefore, the time of lactate injection was reduced. On March 17, 2005, the sodium lactate dose was reduced again in response to biofouling.

This type of routine dosing of the injection wells with a biofouling control agent (citric acid) is required to keep the bacteria from completely clogging the filter pack of the injection wells. Biofouling is particularly problematic during the preconditioning phase, when there is still dissolved oxygen in the groundwater. Aerobic bacteria grow faster and have a higher biomass yield than anaerobic bacteria.

Options for removing dissolved oxygen from the extracted groundwater are being evaluated. One option being evaluated is a pre-treatment vessel that removes dissolved oxygen by chemical and biological reduction. Typical additives for removal of dissolved oxygen, such as sodium thiosulfate, are not permitted in the Waste Discharge Requirements (WDR).

Mitigation measures include preventive treatment and shock treatment of the injection wells. Preventive treatment is for routine use before biofouling becomes problematic.

Shock treatment will be performed on an as-needed basis after biofouling has become problematic. Several options are being evaluated for both treatments. For example, injection of citric acid is a preventive measure, and adding citric acid and redeveloping the well is a shock treatment. A matrix of biofouling control measures will be included in the evaluation report to be published in summer 2005.

4.3 Summary of System Operation and Monitoring Activities

Table 4-3 presents the routine and nonroutine operation, monitoring, and maintenance activities conducted during first quarter 2005, and the activities planned as part of ongoing operation and monitoring of the Site 10 EISB treatment system.

4.3.1 System Operation Data

Table 4-4 summarizes groundwater recirculated and the sodium lactate that was injected by the Site 10 EISB treatment system.

Groundwater extraction has been fairly consistent when the extraction pumps are on. The EISB treatment system pumped 366,073 gallons of groundwater primarily from four extraction wells (see Table 4-5). The injection well 10C037RW had the lowest specific capacity during well installation. This well has consistently taken less water than the other injection wells. 10C041RW and 10C043RW have also taken less than average amounts of water during first quarter 2005. The average pumping rate, per extraction well, during first quarter 2005 was 0.84 gallons per minute (gpm).

Sodium lactate injection began on January 20, 2005. The updated estimated electron donor demand for the treatment area at Site 10 is 1,947 gallons of 60 percent sodium lactate per year. This is equivalent to 243 gallons per year or 4.7 gallons per week per injection well. The average lactate dosage rate for each injection well during this quarter was less than 4.7 gallons per week for each injection well (see Table 4-6). The average dosage rate for the quarter is roughly half that of the calculated demand for the treatment area. The dosage rate was reduced twice during the quarter to mitigate biofouling of the injection wells.

Citric acid was used twice during first quarter 2005 as a biofouling control. Biofouling control is discussed in Section 4.2.

4.3.2 Groundwater Monitoring Data

Appendix B provides a discussion of quarterly groundwater monitoring data collected during January 2005. Table 4-7 list the analytes detected in groundwater. Complete analytical results for first quarter 2005 are provided in Appendix B, Attachment B2.

4.4 Remedial Process Optimization Actions for Site 10 EISB Treatment System

Table 4-8 presents a summary of RPO actions planned for completion in second quarter 2005 for the Site 10 EISB treatment system. Before bioaugmenting with KB-1, the EISB treatment system must be operating consistently, and stable anaerobic conditions must be

established. Neither of these two criteria was observed during first quarter 2005. Therefore, bioaugmentation will be postponed until these conditions exist.

TABLE 4-2
ERP Site 10 EISB Treatment System – Transect 1 Well Identification and Classification
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Well Type	Number of Wells	Well Identification
Extraction wells	5	New - 10C030RW, 10C031RW, 10C032RW, and 10C045RW
		Existing – 10C024EW
Injection wells	8	New - 10C034RW, 10C036RW, 10C037RW, 10C038RW, 10C039RW, 10C041RW, and 10C043RW
		Existing – 10C022IW
Performance monitoring wells	8	New - 10C047MW, 10C048MW, 10C049MW, 10C054RW, and 10C055RW
		Existing - 10C001MW, 10M004MW, and 10M006MW
Performance monitoring wells (Limited Monitoring)	2	New - 10C033RW and 10C040RW
Interim compliance monitoring wells	5	New - 10C035RW, 10C050RW, and 10C051RW
(upper zone)		Existing - 10C003MW and 10M005MW
Compliance monitoring wells (lower zone)	2	Existing – 10L001MW and 10R001MW

4-4 RDD/051930020 (CAH3135.DOC)

TABLE 4-3
ERP Site 10 EISB Treatment System – Operation, Monitoring, and Maintenance Activities, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Description	Date	Comment
Routine Activity		
Visually inspected the system components for proper equipment operation.	Weekly	
Adjusted valve positions to balance out the flow from each extraction well to the adjacent injection wells. In cases where injection wells were injecting under pressure (well is full), the flow was reduced to avoid leaks.	Weekly	
Nonroutine Activity		
Replaced valves that control flow from extraction wells to injection wells with globe valves for better flow control.	February 2, 2005	
Installed check valves in lines between extraction and injection wells to prevent backflow/siphoning between injection wells.	February 2, 2005	
CH2M HILL conducted an independent audit of the system.	March 8, 2005	Site risks were identified and are being addressed.
Collected calibration data to identify the cause of unreliable flow data from the retriever units.	Weekly throughout March 2005	QED is running experiments in their lab to test various hypotheses.
Replaced the pneumatic extraction pump in 10C032RW with the pump from the pilot test system because of a faulty actuator.	March 16, 2005	The pump will be serviced by QED and returned for use in the EISB treatment system.
The pump head on chemical metering pump No. 4 (provides lactate to 10C030RW) was found to be cracked.	March 16, 2005	A replacement head was ordered and will be installed in April 2005.

TABLE 4-4
ERP Site 10 EISB Treatment System – Summary of Operations and Monitoring Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	Value	Comment
Extraction wells operating	4	Pilot-test extraction well 10C024EW used temporarily during February 2005.
Volume of sodium lactate injected (gallons)	179	
Calculated lactate demand (percent)	48	
Average extraction well flow rate (gpm)	0.84	
Average depth to water at injection wells (feet btoc)	20.7	Biofouling clogging injection wells.
Depth to groundwater (feet bgs)	40	

Note:

btoc = below top of casing

TABLE 4-5
ERP Site 10 EISB Treatment System – Groundwater Injected, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Month	10C022IW (0.70) ^a	10C034RW (0.40) ^a	10C036RW (0.50) ^a	10C037RW (0.10) ^a	10C038RW (0.48) ^a	10C039RW (0.60) ^a	10C041RW (0.28) ^a	10C043RW (0.28) ^a	Total (3.34) ^a
January	20,368	10,599	24,103	6,331	12,103	22,507	10,561	18,499	125,072
February	28,098	20,558	15,228	5,035	17,601	22,643	10,614	5,531	125,306
March	28,052	12,231	15,587	0	23,236	20,928	9,414	6,246	115,695
Total	76,518	43,388	54,918	11,367	52,940	66,078	30,589	30,276	366,073

^aValue shown in parenthesis represents the average pumping rate (gpm).

Note:

Values are in gallons unless otherwise noted.

TABLE 4-6
ERP Site 10 EISB Treatment System – Sodium Lactate Injected, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Month	10C022IW	10C034RW	10C036RW	10C037RW	10C038RW	10C039RW	10C041RW	10C043RW	Total
January	8	4	7	2	3	5	3	6	37
February	19	15	10	4	8	20	11	7	94
March	2	6	3	1	4	14	14	4	48
Quarterly Total	30	25	20	6	15	39	27	17	179
Rate (gallons/week)	2.97	2.53	1.97	0.64	1.46	3.91	2.70	1.73	18

Note:

Values are in gallons unless otherwise noted.

TABLE 4-7 Summary of Detected Compounds in Well Samples, First Quarter 2005 LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
Compliance Monitoring Well					
1/17/2005	31 to 51	10C003MW	Acetone	1.8 F	μg/L
			Methane	0.6	μg/L
			TCE	2.03	μg/L
3/21/2005			Bromoform	0.39 F	μg/L
			Dibromochloromethane	0.18 F	μg/L
			Methane	0.14 F	μg/L
			TCE	1.69	μg/L
1/18/2005	50 to 62	10C035RW	cis-1,2-DCE	2.54	μg/L
			Manganese, dissolved	0.0013 F	mg/L
			Methane	0.23 F	μg/L
			PCE	0.33 F	μg/L
			TCE	32.6	μg/L
3/23/2005			Chloride	1.45	mg/L
			cis-1,2-DCE	3.59	μg/L
			Iron, dissolved	0.021 F	mg/L
			Manganese, dissolved	0.0261	mg/L
			Methane	0.21 F	μg/L
			Nitrate-N	2.33	mg/L
			PCE	0.4 F	μg/L
			Phosphate	0.3 F	mg/L
			Sulfate	2.97	mg/L
			Sulfide	1.4 F	mg/L
			TCE	44.2	μg/L
1/17/2005	32 to 52	10C050RW	Acetic acid	0.031 F	mg/L
			Chloroform	0.14 F	μg/L
			cis-1,2-DCE	1.87	μg/L
			Manganese, dissolved	0.0025 F	mg/L
			PCE	29.5	μg/L
			TCE	242	μg/L
1/18/2005			Methane	0.28 F	μg/L
3/22/2005			cis-1,2-DCE	1.51	μg/L
			Manganese, dissolved	0.0015 F	mg/L
			Methane	0.25 F	μg/L
			PCE	23.3	μg/L
			TCE	149	μg/L

4-8 RDD/051930020 (CAH3135.DOC)

TABLE 4-7Summary of Detected Compounds in Well Samples, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California*

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
1/20/2005	37 to 54	10C051RW	cis-1,2-DCE	8.42 F	μg/L
			Ethane	0.076 F	μg/L
			Manganese, dissolved	0.0557	mg/L
			Methane	0.2 F	μg/L
			PCE	42.7 F	μg/L
			TCE	694	μg/L
3/22/2005			Chloroform	0.85	μg/L
			cis-1,2-DCE	11	μg/L
			Manganese, dissolved	0.0006 F	mg/L
			Methane	0.16 F	μg/L
			PCE	50.7	μg/L
			TCE	736	μg/L
1/19/2005	23 to 42.5	10M005MW	Methane	0.17 F	μg/L
3/23/2005			Methane	0.12 F	μg/L
Performance Monitoring V	Vell				
1/17/2005	28 to 48	10C001MW	Acetic acid	0.041 F	mg/L
77772000			Chloride	22.9	mg/L
			Chloroform	0.69 F	μg/L
			cis-1,2-DCE	301	μg/L
			Iron, dissolved	0.012 F	mg/L
			Lactic Acid	0.027 F	mg/L
			Methane	0.38 F	μg/L
			Nitrate-N	1.52	mg/L
			PCE	74.3	μg/L
			Sulfate	9.98	mg/L
			TCE	993	μg/L
			trans-1,2-DCE	0.55 F	μg/L
3/21/2005			Chloride	23.4	mg/L
			Chloroform	0.74 F	μg/L
			cis-1,2-DCE	342	μg/L
			Iron, dissolved	0.008 F	mg/L
			Manganese, dissolved	0.0012 F	mg/L
			Methane	0.23 F	μg/L
			Nitrate-N	1.27	mg/L
			PCE	91.3	μg/L
			Phosphate	0.08 F	mg/L
			Sulfate	6.38	mg/L
			TCE	1,000	μg/L

TABLE 4-7 Summary of Detected Compounds in Well Samples, First Quarter 2005 LTO&M First Quarter 2005 Report, Beale Air Force Base, California

	Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
1/18/2005		33 to 43	10C033RW	Acetone	1.2 F	μg/L
				cis-1,2-DCE	14.4	μg/L
				PCE	0.32 F	μg/L
				TCE	20.7	μg/L
1/18/2005		38 to 43	10C040RW	cis-1,2-DCE	12.3	μg/L
				TCE	11.9	μg/L
1/17/2005		32 to 52	10C047MW	Acetone	1.5 F	μg/L
				Chloride	48.5	mg/L
				cis-1,2-DCE	8.57	μg/L
				Iron, dissolved	0.008 F	mg/L
				Manganese, dissolved	0.0005 F	mg/L
				Methane	0.21 F	μg/L
				Nitrate-N	1.21	mg/L
				PCE	1.95	μg/L
				Sulfate	8.81	mg/L
				TCE	27	μg/L
3/21/2005				Acetone	6.5 F	μg/L
				Bromoform	0.7 F	μg/L
				Chloride	40.6	mg/L
				Chloroform	0.1 F	μg/L
				cis-1,2-DCE	6.97	μg/L
				Dibromochloromethane	0.25 F	μg/L
				Iron, dissolved	0.012 F	mg/L
				Methane	0.18 F	μg/L
				Nitrate-N	1.12	mg/L
				PCE	3.75	μg/L
				Phosphate	0.061 F	mg/L
				Sulfate	8.48	mg/L
				Sulfide	2.2	mg/L
				TCE	37.4	μg/L
				trans-1,2-DCE	0.87 F	μg/L
1/18/2005		32 to 67	10C048MW	1,1,2-TCA	0.34 F	μg/L
				Benzene	0.11 F	μg/L
				Chloride	9.15	mg/L
				Chloroform	1.41	μg/L
				cis-1,2-DCE	178	μg/L
				Ethane	0.21 F	μg/L
				Iron, dissolved	0.021 F 0.004 F	mg/L
				Manganese, dissolved Methane	0.004 F 0.44 F	mg/L μg/L
				Nitrate-N	1.67	mg/L
				PCE	31.1	μg/L

4-10 RDD/051930020 (CAH3135.DOC)

TABLE 4-7Summary of Detected Compounds in Well Samples, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California*

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
Date	(leet bgs)	Location	Sulfate	7.49	mg/L
			TCE	1,660	μg/L
			trans-1,2-DCE	0.51 F	μg/L
3/22/2005			Chloride	8.39	mg/L
0/22/2000			Chloroform	0.47	μg/L
			cis-1,2-DCE	126	μg/L
			Iron, dissolved	0.006 F	mg/L
			Methane	0.2 F	μg/L
			Nitrate-N	1.84	mg/L
			PCE	6.38	μg/L
			Phosphate	0.096 F	mg/L
			Sulfate	7.54	mg/L
			Sulfide	2.2	mg/L
			TCE	435	μg/L
			trans-1,2-DCE	0.32 F	μg/L
1/17/2005	33 to 68	10C049MW	1,1,2-TCA	0.38 F	μg/L
			Benzene	0.09 F	μg/L
			Chloride	27.7	mg/L
			Chloroform	0.86	μg/L
			cis-1,2-DCE	146	μg/L
			Ethane	0.31 F	μg/L
			Iron, dissolved		mg/L
			Manganese, dissolved		mg/L
			Methane		μg/L
			Nitrate-N		mg/L
			PCE		μg/L
			Phosphate		mg/L
			Sulfate		mg/L
			TCE		μg/L
0/04/0005			trans-1,2-DCE		μg/L
3/21/2005			1,1,2-TCA	7.54 2.2 435 0.32 F 0.38 F 0.09 F 27.7 0.86 146 0.31 F 0.006 F 0.57 F 1.19 19.9 0.051 F 12.4 716 0.19 F 0.41 F 30 0.74 155 0.085 F 0.009 F 0.28 F 1.29 16 0.07 F	μg/L
			Chloride		mg/L
			Chloroform		μg/L
			cis-1,2-DCE	155	μg/L
			Ethane	0.085 F	μg/L
			Iron, dissolved	0.009 F	mg/L
			Methane	0.28 F	μg/L
			Nitrate-N	1.29	mg/L
			PCE		μg/L
			Phosphate		mg/L
			Sulfate	11.1	mg/L
			Sulfide	2.2	
					mg/L
			TCE	603	μg/L
			trans-1,2-DCE	1.46 F	μg/L

TABLE 4-7
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

	Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
1/17/2005		240.4 to 260.4	10C054RW	Acetone	1.6 F	μg/L
				Chloride		mg/L
				Chloroform cis-1,2-DCE 5.93 Iron, dissolved 0.009 F manganese, dissolved 0.0022 F manganese, dissolved 0.0022 F manganese, dissolved 0.0022 F manganese, dissolved 0.0022 F manganese, dissolved 0.27 F manganese, dissolved 0.20 F manganese, dissolved 0.2	μg/L	
				cis-1,2-DCE	0.75 5.93 0.009 F ed 0.0022 F 0.27 F 1.82 93.9 3.81 696 9.55 0.72 6.06 0.007 F 0.001 F 0.19 F 1.81 92 0.15 F 3.72 5 611 0.58 1.29 0.17 F 1.4 F 25.7 1.06 88.5 F ed 0.0273 1.84	μg/L
				Iron, dissolved	0.009 F	mg/L
				Manganese, dissolved	0.0022 F	mg/L
				Methane	0.27 F	μg/L
				Nitrate-N	1.82	mg/L
				PCE	93.9	μg/L
				Sulfate	3.81	mg/L
				TCE	696	μg/L
3/22/2005				Chloride	9.55	mg/L
				Chloroform	0.72	μg/L
				cis-1,2-DCE	6.06	μg/L
				Iron, dissolved	0.007 F	mg/L
				Manganese, dissolved	0.001 F	mg/L
				Methane	0.19 F	μg/L
				Nitrate-N	1.81	mg/L
				PCE	92	μg/L
				Phosphate	0.15 F	mg/L
				Sulfate	3.72	mg/L
				Sulfide	5	mg/L
				TCE	611	μg/L
1/17/2005		275 to 295	10C055RW	1,1,1,2-TECA	0.58	μg/L
				1,1,2-TCA	1.29	μg/L
				1,1-DCE	0.17 F	μg/L
				Acetone	0.75 5.93 0.009 F 0.0022 F 0.27 F 1.82 93.9 3.81 696 9.55 0.72 6.06 0.007 F 0.001 F 0.19 F 1.81 92 0.15 F 3.72 5 611 0.58 1.29 0.17 F 1.4 F 25.7 1.06 88.5 F 0.0273 1.84 147 7.62 1,740 0.15 F 0.82 1.51	μg/L
				Chloride		mg/L
				Chloroform		μg/L
				cis-1,2-DCE		μg/L
				Manganese, dissolved	0.0273	mg/L
				Nitrate-N	1.84	mg/L
				PCE	147	μg/L
				Sulfate	7.62	mg/L
				TCE	1,740	μg/L
				trans-1,2-DCE	0.15 F	μg/L
				Ethane	0.82	μg/L
				Methane	1.51	μg/L
3/22/2005				1,1,2-TCA	0.99 F	μg/L
				Chloride	23.4	mg/L
				Chloroform	1.16 F	μg/L

4-12 RDD/051930020 (CAH3135.DOC)

TABLE 4-7
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
	(1001 1190)		cis-1,2-DCE	102	μg/L
			Ethane	0.3 F	μg/L
			Iron, dissolved	0.024 F	mg/L
			Manganese, dissolved	0.0239	mg/L
			Methane	0.44 F	μg/L
			Nitrate-N	1.88	mg/L
			PCE	165	μg/L
			Phosphate	0.05 F	mg/L
			Sulfate	6.98	mg/L
			Sulfide	4.2	mg/L
			TCE	1,570	μg/L
/17/2005	36.4 to 56.4	10M004MW	1,1-DCE	0.15 F	μg/L
,,=000	Acetic acid 34 Bromoform 0.13 F Chloride 20.2 cis-1,2-DCE 181 Dibromochloromethane 0.19 F Ethane 32.7 Iron, dissolved 2.64		mg/L		
					μg/L
				20.2 181	mg/L
					μg/L
					μg/L
					μg/L
					mg/L
			Manganese, dissolved	13	mg/L
			Methane	5,900	μg/L
			PCE	0.4 F	μg/L
			Propionic acid	9.06	mg/L
			Sulfate	0.24 F	mg/L
			TCE	34.3	μg/L
			trans-1,2-DCE	1.04	μg/L
			Vinyl chloride	54	μg/L
3/21/2005			Acetic Acid	46.2	mg/L
			Acetone	23.4	μg/L
			Benzene	0.07 F	μg/L
			Chloride	20	mg/L
			cis-1,2-DCE	0.5 F	μg/L
			Ethane	47.2	μg/L
			Iron, dissolved	3.14	mg/L
			Lactic acid	1.53	mg/L
			Manganese, dissolved	8.31	mg/L
			MEK (2-Butanone)	41.2	μg/L
			Methane	16700	μg/L
			Propionic acid	51.3	mg/L
			Sulfate	0.035 F	mg/L
			Sulfide	3	mg/L

TABLE 4-7 Summary of Detected Compounds in Well Samples, First Quarter 2005 LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
			TCE	0.1 F	μg/L
			Toluene	0.21 F	μg/L
			trans-1,2-DCE	0.16 F	μg/L
			Vinyl chloride	2.24	μg/L
1/18/2005	46 to 65.5	10M006MW	Bromoform	1.5 F	μg/L
			Chloride	2.85	mg/L
			Chloroform	0.19 F	μg/L
			cis-1,2-DCE	34.4	μg/L
			Dibromochloromethane	3.34 F	μg/L
			Methane	0.21 F	μg/L
			Nitrate-N	2.51	mg/L
			PCE	1.98	μg/L
			Sulfate	5.27	mg/L
			TCE	157	μg/L
			trans-1,2-DCE	0.1 F	μg/L
3/22/2005			Chloride	2.68	mg/L
			Chloroform	0.15 F	μg/L
			cis-1,2-DCE	25.3	μg/L
			Iron, dissolved	0.013 F	mg/L
			Manganese, dissolved	0.0009 F	mg/L
			Methane	0.15 F	μg/L
			Nitrate-N	2.44	mg/L
			PCE	1.76	μg/L
			Phosphate	0.051 F	mg/L
			Sulfate	0.21 F 2.51 1.98 5.27 157 0.1 F 2.68 0.15 F 25.3 0.013 F 0.0009 F 0.15 F 2.44 1.76 0.051 F 4.1 1.8 F 139 0.12 F	mg/L
			Sulfide	1.8 F	mg/L
			TCE	139	μg/L
			trans-1,2-DCE	0.12 F	μg/L
Monitoring Well					
1/18/2005	90 to 110	10C006MW	Acetone	1.2 F	μg/L
			TCE	1.38	μg/L
1/19/2005	38.62 to 58.62	10C009MW	Bromoform	0.18 F	μg/L
			Chloroform	0.11 F	μg/L
			cis-1,2-DCE	0.36 F	μg/L
			PCE	1.13	μg/L
			TCE	44.3	μg/L
1/19/2005	46.5 to 61.5	10R004MW	PCE	0.18 F	μg/L
			TCE	5.74	μg/L

4-14 RDD/051930020 (CAH3135.DOC)

TABLE 4-7
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
Extraction Wells					
1/19/2005	40 to 58	10C030RW	Acetone	1.8 F	μg/L
			Chloroform	0.56	μg/L
			cis-1,2-DCE	393	μg/L
			Methane	0.21 F	μg/L
			PCE	7	μg/L
			TCE	180	μg/L
			trans-1,2-DCE	1.16	μg/L
3/23/2005			Chloroform	0.59	μg/L
			cis-1,2-DCE	323	μg/L
			Methane	0.19 F	μg/L
			PCE	15.3	μg/L
			TCE	212	μg/L
			trans-1,2-DCE	2.04	μg/L
1/19/2005	43 to 63	10C031RW	Chloride	12	mg/L
			Chloroform	1.38 F	μg/L
			cis-1,2-DCE	107	μg/L
			Iron, dissolved	0.019 F	mg/L
			Manganese, dissolved	0.0022 F	mg/L
			Methane	0.25 F	μg/L
			Nitrate-N	1.88	mg/L
			PCE	231	μg/L
			Phosphate	0.036 F	mg/L
			Sulfate	6.98	mg/L
			TCE	3,340	μg/L
3/23/2005			cis-1,2-DCE	176	μg/L
			Methane	0.22 F	μg/L
			PCE	190	μg/L
			TCE	2,920	μg/L
1/19/2005	43 to 63	10C032RW	Bromoform	1.82 F	μg/L
			Chloride	9.79	mg/L
			Chloroform	2.26 F	μg/L
			cis-1,2-DCE	351	μg/L
			Ethane	0.064 F	μg/L
			Iron, dissolved	0.004 i 0.011 F	mg/L
			Manganese, dissolved	0.0049 F	mg/L
			Methane	0.34 F	μg/L
			Nitrate-N	1.48	mg/L
			PCE	55.7	μg/L

TABLE 4-7
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

	Screen Interval	Sample			
Date	(feet bgs)	Location	Analyte	Result	Units
			Phosphate	0.048 F	mg/L
			Sulfate	6.62	mg/L
			TCE	2,720	μg/L
			trans-1,2-DCE	1.89 F	μg/L
3/23/2005			Chloroform	1.5	μg/L
			cis-1,2-DCE	223	μg/L
			Iron, dissolved	0.014 F	mg/L
			Methane	0.28 F	μg/L
			PCE	66.1	μg/L
			Sulfide	1.4 F	mg/L
			TCE	1,830	μg/L
			trans-1,2-DCE	0.77 F	μg/L
3/31/2005			Chloride	11.9	mg/L
			Nitrate-N	1.7	mg/L
			Sulfate	8.09	mg/L
1/19/2005	47 to 62	10C045RW	Chloroform	0.2 F	μg/L
			cis-1,2-DCE	36.9	μg/L
			Methane	0.2 F	μg/L
			PCE	2.12	μg/L
			TCE	169	μg/L
			trans-1,2-DCE	0.13 F	μg/L
3/23/2005			Chloroform	0.16 F	μg/L
			cis-1,2-DCE	27.6	μg/L
			Lactic acid	1.49	mg/L
			Methane	0.13 F	μg/L
			PCE	1.66	μg/L
			TCE	124	μg/L
			trans-1,2-DCE	0.15 F	μg/L

Notes:

Results shown in **bold** exceed the state Maximum Contaminant Level (MCL).

DCE = dichloroethene

F = The analyte was positively identified, but the associated numerical value is at or below the reporting limit.

MEK = methylethyl ketone mg/L = milligrams per liter PCE = tetrachloroethylene

TCA = trichloroethane

TABLE 4-8
ERP Site 10 EISB Treatment System – Optimization and Recommendations, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Planned RPO Actions

Activity	Status	Date	Comment
Remove air relief valves from each injection well.	Open	April 2005	These valves were included as a safety precaution. When water levels in the injection wells rise then fall, a vacuum can be created that could cause the well to collapse. The risk of this occurring in a 2-inch well is relatively remote. The risk of leaks from these valves is much greater.
Perform aquifer test and use results to update groundwater model.	Open	April through June 2005	To accurately predict the distribution of amendments in the subsurface, the groundwater model must be updated. Simulations will be run to accurately predict the distribution of amendments in the subsurface. If the distribution is inadequate with the existing set of extraction and injection wells, then the model will be used to determine locations for additional wells.
Pre-treat vessels to reduce dissolved oxygen.	Open	May 2005	A biological treatment vessel consisting of organic matter and anaerobic inoculum, and an activated carbon vessel are being considered for stripping the dissolved oxygen from the groundwater prior to reinjecting. Addition of a reducing agent such as sodium thiosulfate would be preferred, but the WDRs do not currently allow the use of such agents. If dissolved oxygen continues to be problematic, then a modification to the WDRs might be requested.
Install backpressure valves at the injection point for the sodium lactate.	Open	May 2005	The existing back-pressure valves are installed at the manifold in the control shed. This will provide more consistent control of the sodium lactate.
Install inline static mixers in the groundwater recirculation line downstream of the injection point for the sodium lactate.	Open	May 2005	The static mixers will remove mixing as a potential source of biofouling.

This page intentionally left blank.

4-18 RDD/051930020 (CAH3135.DOC)

LEGEND

COMPONENTS OF EISB SYSTEM (YEAR 1):

- INJECTION WELL
- PERFORMANCE MONITORING WELL
- COMPLIANCE MONITORING WELL (UPPER ZONE)
- COMPLIANCE MONITORING WELL (LOWER ZONE)
- MONITORING WELL
- ⊕ SOIL VAPOR EXTRACTION WELL
- LACTATE/AIR CONVEYANCE
- GROUNDWATER CONVEYANCE
- CONTROL SHED
- LACTATE STORAGE SHED

FIGURE 4-1 SITE 10 EISB TREATMENT SYSTEM LAYOUT AND SAMPLE LOCATIONS, TRANSECT 1

LTO&M FIRST QUARTER 2005 REPORT BEALE AIR FORCE BASE, CALIFORNIA

CH2MHILL -

E062005015RDD 05 (7/15 /05)

PROCESS FLOW DIAGRAM

LTO&M FIRST QUARTER 2005 REPORT BEALE AIR FORCE BASE, CALIFORNIA

CH2MHILL

Site 13 Groundwater Treatment System

Section 5.0 provides a summary of the Site 13 GTS and includes the following information:

- System background and site description
- Summary of GTS startup
- System operation and monitoring data collected and maintenance activities conducted during first quarter 2005
- RPO actions
- Site plan presenting the GTS layout

Table 5-1 summarizes historical information and selected current operating data regarding the GTS. Laboratory analyses performed on groundwater samples are provided in Appendix A.

TABLE 5-1
ERP Site 13 GTS System Summary
LTORM First Quarter 2005 Report Beale Air Force Base, California

Parameter	Summary Description					
System location	Southwestern portion of Beale AFB (Landfill No. 1) (see Figure 5-1).					
Source of contamination	Site 13 Landfill No. 1.					
Contaminants of concern	Petroleum hydrocarbons and chlorinated VOCs, primarily TCE and 1,1,2,2-TECA.					
Depth to groundwater (approximate range)	40 to 59 feet bgs.					
System history	1942 to 1948: Area used for disposal by U.S. Army.					
	1948 to mid-1950s: Area now referred to as Landfill No. 1, used for disposal of clarifier skimmings by U.S. Air Force.					
	1981: Phase I Records Search by Engineering-Science, Inc., identifying Site 13.					
	1985 to 1987: Geophysical survey and groundwater and surface water sampling by AeroVironment.					
	1998 to 1990: Groundwater and surface water sampling, soil borings, soil samples, aquifer test, and geophysical investigation by CH2M HILL.					
	1991: Groundwater sampling by Engineering-Science, Inc					
	1992: Interviews with Beale AFB personnel. Soil and groundwater sampling by LAW.					
	1994: HydroPunch® groundwater sampling in offbase area by Harding Lawson, identifying offbase contamination.					
	1993 to 1995: Geophysical survey, soil vapor survey, exploratory test pits, soil boring/HydroPunch® sampling, deep stratigraphic borings, and groundwater sampling by LAW.					
	1994: Installation of a Groundwater Treatability Test System (GTTS) by LAW.					
	1996: Removal of 7,200 tons of soil and debris from the M-5 ointment-tube disposal cell by Laguna Construction Company/Metcalf & Eddy.					
	July to August 1997: OHM Remediation Services Corporation expanded GTTS by installing four new extraction wells, and converting three monitoring wells to extraction wells.					

TABLE 5-1
ERP Site 13 GTS System Summary
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	Summary Description				
	December 1997: LAW expanded GTTS by converting two monitoring wells to extraction wells.				
	May 1999: GTTS shut down because of pipe break at Hutchinson Creek crossing.				
	September to December 1999: CH2M HILL expanded GTTS with two new extraction wells, additional air stripper, and new booster pump.				
	March 2000: GTTS restarted.				
	June 2000: Leak discovered at 13L027MW. Spill samples were collected, piping was repaired, and extraction well restarted.				
	Fall 2000: Six monitoring wells and two piezometers were installed at Site 13.				
	Summer 2001: One monitoring well and one piezometer were installed at Site 13.				
	 December 2003: The GTTS discharge line was modified (valved tee) to allow discharge to a drainage swale that leads either directly to Hutchinson Creek or the aeration pond. 				
	August 2004: Work began on construction project to place a soil cover on the former landfill (Landfill No. 1) and upgrade the GTTS controls. GTTS renamed to groundwater treatment system (GTS).				
	 January 2004: Controls upgrades on the GTS were completed and the system resumed operations. 				
System components	Eighty-eight wells, 12 of which are currently being used as extraction wells, piping, pumps, control panel, control house, and two air strippers.				
Depth of well screen intervals (range)	67 to 265 feet bgs.				
Mass removal	Total from startup: 503 pounds TCE. Total for 2005: 10 pounds TCE.				

5.1 Site 13 GTS Background and Description

ERP Site 13 Landfill No. 1 is an inactive landfill, located in the southwestern portion of Beale AFB. The landfill area encompasses approximately 7 acres bounded by open fields and grazing land to the north, south, and west, and sludge drying beds adjacent to the wastewater treatment plant to the east (see Figure 5-1). A complete summary of the history and investigation of Site 13 was presented in the *Site 13 Remedial Investigation* (CH2M HILL, 2001e).

The objective of the GTS is to contain TCE-contaminated groundwater beneath Site 13 and property adjacent to Beale AFB. Twelve groundwater extraction wells and a treatment system are operating at Site 13 (see Figure 5-1).

5.2 GTS Optimization

Eight groundwater monitoring wells, and two groundwater extraction wells were installed to optimize the GTS groundwater plume monitoring, plume containment, and contaminant mass extraction during fourth quarter 2004. Additionally, during first quarter 2005 the GTS electrical system and controls were upgraded to improve reliability and uptime. Figure 5-2 presents a process flow diagram for the Site 13 GTS system.

5-2 RDD/051930020 (CAH3135.DOC)

5.3 Summary of System Operation and Monitoring Activities

5.3.1 System Operation Data

Table 5-2 presents extraction well flow rates, system flow rates, and uptime. Table 5-3 presents weekly operating data. Table 5-4 presents the routine and nonroutine operation, monitoring, and maintenance activities conducted during first quarter 2005, and the activities planned as part of ongoing operation and monitoring of the Site 13 GTS.

The GTS began operation on January 14, 2005, after being down for system upgrades and construction of a soil cover on the former landfill. The system operated until February 23, when it was shut down to perform annual maintenance and to limit the flow to Pond 4. The system was restarted on March 2, at one-third capacity to keep the flow to Pond 4 near 100 gpm. The first quarter 2005 system uptime was 75 percent, as calculated from system logs, because of an error in the logging software. Future quarterly uptimes will be calculated from the air stripper hour meter, and system logs will undergo routine backups.

5.3.2 System Monitoring Data

Groundwater samples were collected from 11 extraction wells on January 21, 2005. Well 13C001MW was offline during the sampling event. All samples were analyzed for VOCs using EPA Method SW8260B. Table 5-5 presents a summary of detected results. Complete validated data are provided in Appendix A. Figure 5-3 shows the TCE concentrations as they have varied since 1993.

The monthly samples of the treatment system influent and effluent were collected in January, February, and March 2005. Table 5-6 presents a summary of detected results. During first quarter 2005, no compounds were detected above the detection limits in the effluent samples. Complete validated data are provided in Appendix A.

Table 5-7 summarizes contaminant mass removal for first quarter 2005. Approximately 9.8 pounds of TCE and 11.6 pounds of total VOCs were removed by the GTS during first quarter 2004. Since system startup in November 1994, approximately 503 pounds of TCE have been removed from groundwater by the GTS. Samples of the treatment system influent and effluent will continue to be collected monthly to monitor performance of the GTS. Figure 5-4 presents the cumulative mass of TCE removed over the life of the project.

5.4 Remedial Process Optimization Actions for Site 13 GTS

Table 5-8 presents a summary of previously planned RPO actions and actions planned for completion in second quarter 2005 for the Site 13 GTS.

TABLE 5-2
ERP Site 13 GTS, Extraction Well Flow Rates, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Well	Flow at Beginning of Quarter ^a (gpm)	Flow at End of Quarter ^b (gpm)	Target Flow Rate (gpm)	First Quarter Uptime (%)	Comments
13C001MW	20	20	20	c	Pump motor failed, well was nonoperational until February 1, 2005.
13C006MW	20	d	20	c	
13C011EW	50	d	50	c	
13L001EW	15	15	15	c	
13L004EW	5	d	10	c	
13L004MW	20	20	20	c	
13L005MW	20	20	20	c	
13L011MW	20	20	20	c	
13L027MW	20	d	20	c	
13O005EW	80	d	80	c	
13C050EW	0	d	25	c	New extraction well. Totalizer failed; well was operating at approximately 20 gpm.
13C051EW	20	d ^b	25	c	New extraction well.
Total	290	95	325	c	
GTS ^e	320	100	325	75	

^aMeasured on February 2, 2005.

Note:

-- = no data collected; well nonoperational

^bMeasured on March 25, 2005.

^cWell uptimes not recorded because of programming error in supervisory control and data acquisition (SCADA).

^dWells shut down to limit GTS output (see Table 5-4).

^eTotal from magnetic flowmeter.

TABLE 5-3
ERP Site 13 GTS, Summary of Weekly Operating Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Time	System Status	System Hours ^a	Total Influent (gallons)	Comments
01/14/05		On			GTS startup following system upgrades and 5 months offline.
02/02/05	2:30 PM	On		8,215,995	
02/16/05	2:20 PM	On		14,392,059	
02/25/05	8:10 AM	Off		17,511,414	System taken offline for annual maintenance period, and to limit flow to Pond 4.
03/02/05	11:10 AM	On		18,516,495	System operating five extraction wells to limit flow to Pond 4.
03/11/05	14:49 AM	On		19,692,899	System operating five extraction wells to limit flow to Pond 4.
03/18/05	10:06 AM	On		20,409,317	System operating five extraction wells to limit flow to Pond 4.
03/25/05	9:10 AM	On		21,355,588	System operating five extraction wells to limit flow to Pond 4.

^aUptime not recorded because of programming error in SCADA.

Note:

TABLE 5-4
ERP Site 13 GTS – Operation, Monitoring, and Maintenance Activities, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Description	Date	Planned Activity for Next Period	Comment
Routine Activity			
Conducted monthly monitoring of the GTS influent and effluent when the system was operating. Analyze all groundwater samples for VOCs using EPA Method SW8260B.	January 21, 2005 February 8, 2005 March 9, 2005	Conduct monthly monitoring of the GTS influent and effluent when the system is operating. Analyze all groundwater samples for VOCs using EPA Method SW8260B.	
Conducted semiannual monitoring of the GTS active extraction wells. Analyzed all groundwater samples for VOCs using EPA Method SW8260B.	January 21, 2005	Conduct semiannual monitoring of the GTS active extraction wells late in second quarter.	December 2004 sampling was rescheduled for January 2005 because the system was not operational in December.
Collected weekly operating data at the GTS.	Weekly data was collected seven times during first quarter 2005.	Collect weekly operating data at the GTS.	

^{-- =} no data collected

TABLE 5-4
ERP Site 13 GTS – Operation, Monitoring, and Maintenance Activities, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Description	Date	Planned Activity for Next Period	Comment
Performed hydrostatic testing of Hutchinson Creek crossing.		Planned for second quarter 2005.	Biennial activity.
Nonroutine Activity			
Tested operation of the magnetic flowmeter on GTS influent.	January 2005	None.	Meter is functioning accurately following factory recalibration.
Tested pump and motor operations of 13L005MW on system startup. (Pump was replaced in December 2004.)	January 2005	None.	Recommended in LTO&M Second Quarter 2004 Report (CH2M HILL, 2004a).
Replaced pump and motor in 13C001MW.	January 2005	None.	Pump and motor were determined faulty during startup testing.
Pressure tested wellhead 13C001MW.			Wellheads were rebuilt as part of soil cover construction.
			Tested wellhead passed.
Operated GTS at one-third capacity.	February 23 to March 2 the system was operated one-third of operating hours. March 2, 2005 through end of quarter one-third of extraction wells were operated.	Operate all GTS wells after water levels in Pond 4 subside.	GTS discharge was reduced to 100 gpm by operating the five highest concentration extraction wells (13L004MW, 13L001EW, 13C001MW 13L005MW, and13L011MW).
Performed troubleshoot of totalizers on 13C050EW and 13C005EW.		Replace totalizers second quarter 2005.	13C050EW totalizer internals were destroyed by particulates in extracted water.
			13O005EW meter is not recording flow accurately.
Add programming to GTS human- machine interface (HMI) to log daily the system flow rates and runtime hours for wells and major process equipment.	March 23, 2005 (flow totals), runtime hours pending.	Runtime hour logging will be accomplished in second quarter 2005.	

TABLE 5-5
Summary of Detected Compounds in Extraction Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result (μg/L)
01/21/2005	83 to 110	13C006MW	1,1,2-TCA	0.17 F
			cis-1,2-DCE	0.74 F
			MEK (2-Butanone)	10.1
			PCE	0.25 F
			TCE	18.8
			trans-1,2-DCE	0.28 F
01/21/2005	120 to 150	13C011EW	cis-1,2-DCE	0.17 F
			TCE	5.87
			trans-1,2-DCE	0.14 F
01/21/2005	155 to 195	13C050EW	Bromoform	0.74 F
			Dibromochloromethane	0.47 F
			MEK (2-Butanone)	6.9 F
			TCE	2.28
01/21/2005	65 to 105	13C051EW	1,1,2-TCA	0.47 F
			cis-1,2-DCE	2.83
			PCE	0.72 F
			TCE	43.5
			trans-1,2-DCE	0.93 F
01/21/2005	87 to 137	13L001EW	1,1,2-TCA	1.7
			Acetone	1.4 F
			Chloroform	0.36
			cis-1,2-DCE	7.8
			PCE	2.31
			TCE	164
			trans-1,2-DCE	2.88
01/21/2005	84.5 to 134	13L004EW	1,1,2-TCA	0.16 F
			Chloroform	0.19 F
			cis-1,2-DCE	1.48
			PCE	0.55 F
			TCE	29.4
			trans-1,2-DCE	1.01
01/21/2005	78.5 to 98	13L004MW	1,1,2-TCA	2.4
			Acetone	1.4 F
			Chloroform	0.42
			cis-1,2-DCE	8.79
			PCE	3.15
			TCE	200
			trans-1,2-DCE	3.36
01/21/2005	118 to 138	13L005MW	1,1,2-TCA	0.87 F
			Chloroform	0.38
			cis-1,2-DCE	4.62

TABLE 5-5
Summary of Detected Compounds in Extraction Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

	Screen Interval			
Date	(feet bgs)	Sample Location	Analyte	Result (μg/L)
			PCE	1.31
			TCE	89.1
			trans-1,2-DCE	2.11
01/21/2005	70 to 80	13L011MW	1,1,1,2- TECA	0.1 F
			1,1,2-TCA	5.28
			Chloroform	2.21
			cis-1,2-DCE	70.7
			PCE	2.11
			TCE	190
			trans-1,2-DCE	14.3
01/21/2005	123 to 136	13L027MW	cis-1,2-DCE	0.2 F
			PCE	0.09 F
			TCE	6.58
01/21/2005	80 to 145	13O005EW	cis-1,2-DCE	0.36 F
			PCE	0.1 F
			TCE	7.13
			trans-1,2-DCE	0.15 F

Note:

F = The analyte was positively identified, but the associated numerical value is at or below the reporting limit.

TABLE 5-6
ERP Site 13 GTS, Summary of Detected Compounds at the Treatment System, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Date	Sample Location	Analyte	Result (µg/L)
01/21/2005	Combined Influent	1,1,2-TCA	0.74 F
		Chloroform	0.32
		cis-1,2-DCE	7.06
		PCE	0.81 F
		TCE	60
		trans-1,2-DCE	1.96
	Combined Effluent	No analytes detected	
02/08/2005	Combined Influent	1,1,2-TCA	0.8 F
		Chloroform	0.29 F
		cis-1,2-DCE	5.83
		PCE	0.68 F
		TCE	53.5
		trans-1,2-DCE	1.65
	Combined Effluent	No analytes detected	
03/09/2005	Combined Influent	1,1,2-TCA	0.72 F
		Chloroform	0.21 F

5-8 RDD/051930020 (CAH3135.DOC)

TABLE 5-6
ERP Site 13 GTS, Summary of Detected Compounds at the Treatment System, First Quarter 2005

LTO&M First Quarter 2005 Report, Beale Air Force Base, California

			Result
Date	Sample Location	Analyte	(μg/L)
		cis-1,2-DCE	4.65
		PCE	0.64 F
		TCE	45
		trans-1,2-DCE	1.29
	Combined Effluent	No analytes detected	

Note:

F = The analyte was positively identified, but the associated numerical value is at or below the reporting limit.

TABLE 5-7
ERP Site 13 GTS – Summary of 2005 Monitoring Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Parameter	First Quarter 2005	
Total flow rate (range in gpm)	100 to 320	
Total VOC concentration in extracted groundwater (μg/L)	53 to 71	
Hours operated	1609	
Percent uptime	75	
Estimated VOC mass extracted (pounds)	9.8	
Estimated TCE mass extracted (pounds)	11.6	

TABLE 5-8
ERP Site 13 GTS – Optimization and Recommendations, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Previously Planned RPO Actions						
Activity	Status	Date	Comment			
Testing and startup of upgraded GTS electrical and control systems and two new extraction wells.	Testing of system components and safety interlocks complete.	January 14, 2005.	All tested components either passed or were repaired and retested until passed.			
Testing accuracy of the totalizers on Air Strippers 20 and 21, if the system is started up during fourth quarter 2004.	AS-21 totalizer is geared incorrectly. Flow totalizes at half the actual rate (i.e., 100 gpm on AS-21 for 1 minute will increase totalizer by 200 gallons). The multiplier on the totalizer faceplate had been modified from x100 to x50 gallons.	January 2005				
Planned RPO Actions						
Review progammable logic controller (PLC) and HMI data logging capabilities (flow totals and runtime hours) to reduce operator required labor during weekly inspections.		Data logging will be implemented at the GTS during second quarter 2005.				

This page intentionally left blank.

5-10 RDD/051930020 (CAH3135.DOC)

FIGURE 5-3 (PAGE 1 OF 2)
TCE CONCENTRATION VERSUS TIME AT
SITE 13 EXTRACTION WELLS

LTO&M FIRST QUARTER 2005 REPORT BEALE AIR FORCE BASE, CALIFORNIA

FIGURE 5-3 (PAGE 2 OF 2)
TCE CONCENTRATION VERSUS TIME AT SITE 13 EXTRACTION WELLS

LTO&M FIRST QUARTER 2005 REPORT BEALE AIR FORCE BASE, CALIFORNIA

SECTION 6.0

Works Cited

CH2M HILL. 2005. Site 10 Remedial Action Summary Report. March.

CH2M HILL. 2004a. Long-term Operation and Maintenance Second Quarter 2004 Report. August.

CH2M HILL. 2004b. Draft Site 8 SVE and Biovent System Operation and Maintenance Plan.

CH2M HILL. 2004c. Draft Site 8 SVE and Biovent System Installation Presumptive Remedy Engineering Evaluation/Cost Analysis. August.

CH2M HILL. 2004d. Final Site 8 SVE and Biovent System Installation Work Plan. December.

CH2M HILL. 2001. Final Site 13 Remedial Investigation. December.

CH2M HILL. 1999. Site 8 Field Work Summary Report. November.

Law Environmental, Inc. (LAW). 1996. Site Characterization Summary Informal Technical Information Report for Site 8, J-57 Test Cell, Revision 1.0, Beale Air Force Base, California.

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Soil Vapor E	Extraction Systems										
Site 8	Pre-carbon	1/24/2005	SW8015-P	TPH-Gasoline	TPH-Gasoline	e N	14.3	U	μg/L	637	14.3
			TO-14	1,1,1-TCA	71-55-6	Ν	3.19	U	PPBV	53.3	3.19
			TO-14	1,1,2,2-Tetrachloroethane	79-34-5	N	34.6	J	PPBV	53.3	5.94
			TO-14	1,1,2-TCA	79-00-5	N	4.5	U	PPBV	53.3	4.5
			TO-14	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	N	446	J	PPBV	53.3	3.39
			TO-14	1,1-DCA	75-34-3	N	3.16	U	PPBV	53.3	3.16
			TO-14	1,1-DCE	75-35-4	N	3.79	U	PPBV	53.3	3.79
			TO-14	1,2,4-Trichlorobenzene	120-82-1	N	22.9	J	PPBV	53.3	6.06
			TO-14	1,2,4-Trimethylbenzene	95-63-6	N	8.52	J	PPBV	53.3	5.89
			TO-14	1,2-DCA	107-06-2	N	4.04	U	PPBV	53.3	4.04
			TO-14	1,2-DCB	95-50-1	N	16.5	J	PPBV	53.3	6.82
			TO-14	1,2-Dichloropropane	78-87-5	N	4.04	U	PPBV	53.3	4.04
			TO-14	1,2-Dichlorotetrafluoroethane	76-14-2	N	3.08	U	PPBV	53.3	3.08
			TO-14	1,2-EDB	106-93-4	N	3.56	U	PPBV	53.3	3.56
			TO-14	1,3,5-Trimethylbenzene	108-67-8	N	6.92	J	PPBV	53.3	5.59
			TO-14	1,3-DCB	541-73-1	N	11.7	J	PPBV	53.3	6.52
			TO-14	1,4-DCB	106-46-7	N	12.8	J	PPBV	53.3	5.69
			TO-14	Benzene	71-43-2	N	3.2	J	PPBV	53.3	3.13
			TO-14	Bromomethane	74-83-9	N	8.95	U	PPBV	53.3	8.95
			TO-14	Carbon Tetrachloride	56-23-5	N	3.49	U	PPBV	53.3	3.49
			TO-14	Chlorobenzene	108-90-7	N	4.51	U	PPBV	53.3	4.51
			TO-14	Chloroethane	75-00-3	N	7.6	U	PPBV	53.3	7.6
			TO-14	Chloroform	67-66-3	N	5.33	J	PPBV	53.3	3.19
			TO-14	Chloromethane	74-87-3	N	6.39	J	PPBV	53.3	4.51
			TO-14	cis-1,2-DCE	156-59-2	N	2.92	U	PPBV	53.3	2.92
			TO-14	cis-1,3-Dichloropropene	10061-01-5	N	4.82	U	PPBV	53.3	4.82
			TO-14	Dichlorodifluoromethane	75-71-8	N	3.76	U	PPBV	53.3	3.76
			TO-14	Ethylbenzene	100-41-4	N	5.62	U	PPBV	53.3	5.62
			TO-14	Hexachlorobutadiene	87-68-3	N	26.1	J	PPBV	53.3	9.68
			TO-14	m,p-Xylenes	108-38-3/1	N	10.65	U	PPBV	106.5	10.65
			TO-14	Methylene Chloride	75-09-2	N	107	J	PPBV	53.3	19.26
			TO-14	o-Xylene	95-47-6	N	5.66	U	PPBV	53.3	5.66
			TO-14	PCE	127-18-4	N	3.35	U	PPBV	53.3	3.35

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Soil Vapor I	Extraction Systems										
Site 8	Pre-carbon	1/24/2005	TO-14	Styrene	100-42-5	N	4.79	J	PPBV	53.3	4.27
			TO-14	TCE	79-01-6	Ν	5240	J	PPBV	53.3	5.05
			TO-14	Toluene	108-88-3	Ν	5.53	U	PPBV	53.3	5.53
			TO-14	Trichlorofluoromethane	75-69-4	Ν	3.2	J	PPBV	53.3	2.92
			TO-14	Vinyl Chloride	75-01-4	Ν	3.91	U	PPBV	53.3	3.91
	Mid-carbon		SW8015-P	TPH-Gasoline	TPH-Gasoline	Ν	16.8	U	μg/L	748	16.8
			TO-14	1,1,1-TCA	71-55-6	Ν	0.15	U	PPBV	2.5	0.15
			TO-14	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.43	J	PPBV	2.5	0.28
			TO-14	1,1,2-TCA	79-00-5	Ν	0.21	U	PPBV	2.5	0.21
			TO-14	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	Ν	0.16	U	PPBV	2.5	0.16
			TO-14	1,1-DCA	75-34-3	Ν	0.15	U	PPBV	2.5	0.15
			TO-14	1,1-DCE	75-35-4	Ν	0.18	U	PPBV	2.5	0.18
			TO-14	1,2,4-Trichlorobenzene	120-82-1	N	1.45	J	PPBV	2.5	0.28
			TO-14	1,2,4-Trimethylbenzene	95-63-6	N	0.65	J	PPBV	2.5	0.28
			TO-14	1,2-DCA	107-06-2	N	0.19	U	PPBV	2.5	0.19
			TO-14	1,2-DCB	95-50-1	N	0.78	J	PPBV	2.5	0.32
			TO-14	1,2-Dichloropropane	78-87-5	N	0.19	U	PPBV	2.5	0.19
			TO-14	1,2-Dichlorotetrafluoroethane	76-14-2	N	0.14	U	PPBV	2.5	0.14
			TO-14	1,2-EDB	106-93-4	N	0.17	U	PPBV	2.5	0.17
			TO-14	1,3,5-Trimethylbenzene	108-67-8	N	0.35	J	PPBV	2.5	0.26
			TO-14	1,3-DCB	541-73-1	N	0.6	J	PPBV	2.5	0.31
			TO-14	1,4-DCB	106-46-7	N	0.75	J	PPBV	2.5	0.27
			TO-14	Benzene	71-43-2	N	0.58	J	PPBV	2.5	0.15
			TO-14	Bromomethane	74-83-9	N	0.42	U	PPBV	2.5	0.42
			TO-14	Carbon Tetrachloride	56-23-5	N	0.16	U	PPBV	2.5	0.16
			TO-14	Chlorobenzene	108-90-7	Ν	0.25	J	PPBV	2.5	0.21
			TO-14	Chloroethane	75-00-3	Ν	0.36	U	PPBV	2.5	0.36
			TO-14	Chloroform	67-66-3	Ν	0.15	U	PPBV	2.5	0.15
			TO-14	Chloromethane	74-87-3	N	0.9	J	PPBV	2.5	0.21
			TO-14	cis-1,2-DCE	156-59-2	N	0.14	U	PPBV	2.5	0.14
			TO-14	cis-1,3-Dichloropropene	10061-01-5	N	0.23	U	PPBV	2.5	0.23
			TO-14	Dichlorodifluoromethane	75-71-8	N	0.18	Ū	PPBV	2.5	0.18
			TO-14	Ethylbenzene	100-41-4	N	0.58	J	PPBV	2.5	0.26

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Soil Vapor E	Extraction Systems										
Site 8	Mid-carbon	1/24/2005	TO-14	Hexachlorobutadiene	87-68-3	N	0.45	U	PPBV	2.5	0.45
			TO-14	m,p-Xylenes	108-38-3/1	N	1.98	J	PPBV	5	0.5
			TO-14	Methylene Chloride	75-09-2	N	17.2	J	PPBV	2.5	0.9
			TO-14	o-Xylene	95-47-6	N	0.7	J	PPBV	2.5	0.27
			TO-14	PCE	127-18-4	N	0.16	U	PPBV	2.5	0.16
			TO-14	Styrene	100-42-5	N	0.48	J	PPBV	2.5	0.2
			TO-14	TCE	79-01-6	N	8.0	J	PPBV	2.5	0.24
			TO-14	Toluene	108-88-3	N	2.5	J	PPBV	2.5	0.26
			TO-14	Trichlorofluoromethane	75-69-4	N	0.5	J	PPBV	2.5	0.14
			TO-14	Vinyl Chloride	75-01-4	N	0.18	U	PPBV	2.5	0.18
	Post-carbon		SW8015-P	TPH-Gasoline	TPH-Gasoline	. N	15	U	μg/L	667	15
			TO-14	1,1,1-TCA	71-55-6	N	0.13	U	PPBV	2.2	0.13
			TO-14	1,1,2,2-Tetrachloroethane	79-34-5	N	0.25	U	PPBV	2.2	0.25
			TO-14	1,1,2-TCA	79-00-5	N	0.19	U	PPBV	2.2	0.19
			TO-14	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	N	0.22	J	PPBV	2.2	0.14
				TO-14	1,1-DCA	75-34-3	N	0.13	U	PPBV	2.2
			TO-14	1,1-DCE	75-35-4	N	0.16	U	PPBV	2.2	0.16
			TO-14	1,2,4-Trichlorobenzene	120-82-1	N	0.36	J	PPBV	2.2	0.25
			TO-14	1,2,4-Trimethylbenzene	95-63-6	N	0.25	U	PPBV	2.2	0.25
			TO-14	1,2-DCA	107-06-2	N	0.17	U	PPBV	2.2	0.17
			TO-14	1,2-DCB	95-50-1	N	0.29	U	PPBV	2.2	0.29
			TO-14	1,2-Dichloropropane	78-87-5	N	0.17	U	PPBV	2.2	0.17
			TO-14	1,2-Dichlorotetrafluoroethane	76-14-2	N	0.13	U	PPBV	2.2	0.13
			TO-14	1,2-EDB	106-93-4	N	0.15	U	PPBV	2.2	0.15
			TO-14	1,3,5-Trimethylbenzene	108-67-8	N	0.23	U	PPBV	2.2	0.23
			TO-14	1,3-DCB	541-73-1	N	0.27	U	PPBV	2.2	0.27
			TO-14	1,4-DCB	106-46-7	N	0.24	U	PPBV	2.2	0.24
			TO-14	Benzene	71-43-2	N	0.45	J	PPBV	2.2	0.13
			TO-14	Bromomethane	74-83-9	N	0.37	Ü	PPBV	2.2	0.37
			TO-14	Carbon Tetrachloride	56-23-5	N	0.15	U	PPBV	2.2	0.15
			TO-14	Chlorobenzene	108-90-7	N	0.19	U	PPBV	2.2	0.19
			TO-14	Chloroethane	75-00-3	N	0.32	U	PPBV	2.2	0.32
			TO-14	Chloroform	67-66-3	N	0.13	U	PPBV	2.2	0.13

APPENDIX A Summary of Analytical Data, First Quarter 2005 LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Soil Vapor	Extraction Systems										
Site 8	Post-carbon	1/24/2005	TO-14	Chloromethane	74-87-3	N	0.89	J	PPBV	2.2	0.19
			TO-14	cis-1,2-DCE	156-59-2	N	0.12	U	PPBV	2.2	0.12
			TO-14	cis-1,3-Dichloropropene	10061-01-5	Ν	0.2	U	PPBV	2.2	0.2
			TO-14	Dichlorodifluoromethane	75-71-8	Ν	0.16	U	PPBV	2.2	0.16
			TO-14	Ethylbenzene	100-41-4	Ν	0.24	U	PPBV	2.2	0.24
			TO-14	Hexachlorobutadiene	87-68-3	N	0.41	U	PPBV	2.2	0.41
			TO-14	m,p-Xylenes	108-38-3/1	N	0.74	J	PPBV	4.5	0.45
			TO-14	Methylene Chloride	75-09-2	N	5.33	J	PPBV	2.2	0.81
			TO-14	o-Xylene	95-47-6	N	0.24	U	PPBV	2.2	0.24
			TO-14	PCE	127-18-4	N	0.14	U	PPBV	2.2	0.14
			TO-14	Styrene	100-42-5	N	0.18	U	PPBV	2.2	0.18
			TO-14	TCE	79-01-6	N	1.61	J	PPBV	2.2	0.21
			TO-14	Toluene	108-88-3	N	1.07	J	PPBV	2.2	0.23
			TO-14	Trichlorofluoromethane	75-69-4	N	0.12	U	PPBV	2.2	0.12
			TO-14	Vinyl Chloride	75-01-4	N	0.16	U	PPBV	2.2	0.16

Notes:

U = Not Detected.

FD = Field Duplicate.

N = Normal Sample.

Qualifier Description

B = The analyte was found in an associated blank, as well as in the sample.
F = The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

J = The analyte was positively identified, the quantitation is an estimate.
M = A matrix effect was present.

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	1/21/2005	E314	Perchlorate	14797-73-0	N	0.45	F	μg/L	4	0.26
			SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.74	F	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	80.0	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	80.0	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	1/21/2005	SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	Ν	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	Ν	0.32		μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	Ν	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	7.06		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	80.0	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L		0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.81	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	60		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	1.96		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		2/8/2005	SW8260	1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	2/8/2005	SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	Ν	0.8	F	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	Ν	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	Ν	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	Ν	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	Ν	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	2/8/2005	SW8260	Chloroform	67-66-3	N	0.29	F	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	Ν	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	5.83		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.68	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	53.5		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	1.65		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		3/9/2005	SW8260	1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
			SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.06	U	μg/L	0.5	0.06
			300200	1, 1,2,2-1 ettacmoroethane	79-34-5	IN	0.06	U	μу/∟	0.0	

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	3/9/2005	SW8260	1,1,2-TCA	79-00-5	N	0.72	F	μg/L	1	0.07
			SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
			SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
			SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
			SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
			SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
			SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
			SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
			SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
			SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
			SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
			SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
			SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
			SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
			SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
			SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
			SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
			SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
			SW8260	Chloroform	67-66-3	N	0.21	F	μg/L	0.3	0.09
			SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Influent	3/9/2005	SW8260	cis-1,2-DCE	156-59-2	N	4.65		μg/L	1	0.06
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
			SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
			SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
			SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
			SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
			SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
			SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
			SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
			SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
			SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
			SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
			SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
			SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
			SW8260	PCE	127-18-4	N	0.64	F	μg/L	1	0.08
			SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
			SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
			SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
			SW8260	TCE	79-01-6	N	45		μg/L	1	0.07
			SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
			SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
			SW8260	trans-1,2-DCE	156-60-5	N	1.29		μg/L	1	0.07
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
			SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
			SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
	Combined Effluent	1/21/2005	E314	Perchlorate	14797-73-0	N	0.26	U	μg/L	4	0.26
			SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	1/21/2005	SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	Ν	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.1	U	μg/L	1	0.1

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	1/21/2005	SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	Ν	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	Ν	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	Ν	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	Ν	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	80.0	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L		0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	80.0	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.07	U	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	80.0	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	0.1	U	μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	Ν	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		2/8/2005	SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	Ν	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	2/8/2005	SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.1	U	μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	2/8/2005	SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	80.0	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	80.0	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.07	U	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	80.0	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	0.1	U	μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		3/9/2005	SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
			SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
			SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
			SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
			SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
			SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	3/9/2005	SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
			SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
			SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
			SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
			SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
			SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
			SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
			SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
			SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
			SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
			SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
			SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
			SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
			SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
			SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
			SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
			SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
			SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
			SW8260	cis-1,2-DCE	156-59-2	N	0.06	U	μg/L	1	0.06
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
			SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
			SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	Combined Effluent	3/9/2005	SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
			SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
			SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
			SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
			SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
			SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
			SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
			SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
			SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
			SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
			SW8260	PCE	127-18-4	N	0.08	U	μg/L	1	0.08
			SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
			SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
			SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
			SW8260	TCE	79-01-6	N	0.07	U	μg/L	1	0.07
			SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
			SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
			SW8260	trans-1,2-DCE	156-60-5	N	0.07	U	μg/L	1	0.07
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
			SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
			SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
	13C006MW	1/21/2005	SW8260	1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.17	F	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13C006MW	1/21/2005	SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	Ν	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.74	F	μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13C006MW	1/21/2005	SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	10.1		μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	80.0	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.25	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	80.0	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	18.8		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	0.28	F	μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13C011EW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13C011EW	1/21/2005	SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	80.0	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	. 1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.17	F	μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13C011EW	1/21/2005	SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	Ν	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	Ν	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	80.0
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.07	U	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	L 1	80.0
			SW8260	TCE	79-01-6	N	5.87		μg/L		0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	0.14	F	μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13L001EW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	1.7		μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L001EW	1/21/2005	SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	80.0	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	1.4	F	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L		0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.36		μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	7.8		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L001EW	1/21/2005	SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	Ν	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	Ν	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	Ν	80.0	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	2.31		μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	80.0	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	164		μg/L	10	0.99
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	L 1	0.07
			SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	2.88		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13L004EW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.16	F	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L004EW	1/21/2005	SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.19	F	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	1.48		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L004EW	1/21/2005	SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.55	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	Ν	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	80.0
			SW8260	TCE	79-01-6	N	29.4		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	80.0
			SW8260	trans-1,2-DCE	156-60-5	N	1.01		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	L 1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13L004MW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	2.4		μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	Ü	μg/L	1	0.1

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L004MW	1/21/2005	SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	1.4	F	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.42		μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	8.79		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	80.0	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L004MW	1/21/2005	SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	Ν	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	Ν	3.15		μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	Ν	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	Ν	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	200		μg/L	10	0.99
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	3.36		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13L005MW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.87	F	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L005MW	1/21/2005	SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.38		μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	4.62		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L005MW	1/21/2005	SW8260	PCE	127-18-4	N	1.31		μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	Ν	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	Ν	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	Ν	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	Ν	89.1		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	2.11		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
	13L011MW		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
			SW8260	1,1,1,2-Tetrachloroethane	630-20-6	FD	0.1	F	μg/L	0.5	0.09
			SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.1	F	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	FD	0.11	U	μg/L	1	0.11
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	FD	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	FD	5.26		μg/L	1	0.14
			SW8260	1,1,2-TCA	79-00-5	N	5.28		μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCA	75-34-3	FD	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	FD	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	FD	0.07	U	μg/L	1	0.07
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	FD	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	FD	0.11	U	μg/L	1	0.11
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	FD	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	FD	0.07	U	μg/L	1	0.07
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L011MW	1/21/2005	SW8260	1,2-DCA	107-06-2	FD	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-DCB	95-50-1	FD	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	FD	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	FD	0.12	U	μg/L	1	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	FD	0.09	U	μg/L	1	0.09
			SW8260	1,2-EDB	106-93-4	Ν	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	FD	80.0	U	μg/L	1	0.08
			SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	80.0	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	FD	0.1	U	μg/L	1	0.1
			SW8260	1,3-DCB	541-73-1	Ν	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	FD	0.09	U	μg/L	0.4	0.09
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	FD	0.13	U	μg/L	0.5	0.13
			SW8260	1,4-DCB	106-46-7	Ν	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
			SW8260	1-Chlorohexane	544-10-5	FD	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	FD	0.12	U	μg/L	1	0.12
			SW8260	2,2-Dichloropropane	594-20-7	Ν	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	FD	80.0	U	μg/L	1	0.08
			SW8260	2-Chlorotoluene	95-49-8	Ν	80.0	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	FD	0.07	U	μg/L	1	0.07
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	FD	0.6	U	μg/L	10	0.6
			SW8260	Acetone	67-64-1	Ν	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	FD	0.07	U	μg/L	0.4	0.07
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	FD	0.11	U	μg/L	1	0.11
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	FD	0.13	U	μg/L	1	0.13

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L011MW	1/21/2005	SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromodichloromethane	75-27-4	FD	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	FD	0.6	F	μg/L	1	0.08
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	FD	0.23	U	μg/L	3	0.23
			SW8260	Bromomethane	74-83-9	Ν	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	FD	0.08	U	μg/L	1	0.08
			SW8260	Carbon Tetrachloride	56-23-5	Ν	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	FD	0.12	U	μg/L	0.5	0.12
			SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	FD	0.2	U	μg/L	1	0.2
			SW8260	Chloroethane	75-00-3	Ν	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	FD	2.07		μg/L	0.3	0.13
			SW8260	Chloroform	67-66-3	Ν	2.21		μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	FD	0.15	U	μg/L	1	0.15
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	70.7		μg/L	1	0.1
			SW8260	cis-1,2-DCE	156-59-2	FD	64.7		μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	FD	0.1	U	μg/L	0.5	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	FD	0.22	F	μg/L	0.5	0.09
			SW8260	Dibromochloromethane	124-48-1	Ν	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	FD	0.11	U	μg/L	1	0.11
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	FD	0.13	U	μg/L	1	0.13
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	FD	0.08	U	μg/L	1	0.08
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	FD	0.09	U	μg/L	0.6	0.09
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	FD	0.08	U	μg/L	1	0.08
			SW8260	Isopropylbenzene	98-82-8	Ν	0.08	U	μg/L	1	0.08

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L011MW	1/21/2005	SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	m,p-Xylene	108-38-3/1	FD	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	FD	0.2	U	μg/L	10	0.2
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	FD	0.15	U	μg/L	5	0.15
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	FD	0.2	U	μg/L	1	0.2
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	FD	0.1	U	μg/L	10	0.1
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	FD	0.05	U	μg/L	1	0.05
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	FD	0.09	U	μg/L	1	0.09
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	FD	0.08	U	μg/L	1	0.08
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	o-Xylene	95-47-6	FD	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	FD	1.69		μg/L	1	0.07
			SW8260	PCE	127-18-4	N	2.11		μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	FD	0.09	U	μg/L	1	0.09
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	FD	0.07	U	μg/L	1	0.07
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	FD	0.08	U	μg/L	1	0.08
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	FD	165		μg/L	10	0.99
			SW8260	TCE	79-01-6	N	190		μg/L	10	0.99
			SW8260	Tert-Butylbenzene	98-06-6	FD	0.07	U	μg/L	1	0.07
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	FD	0.08	U	μg/L	1	0.08
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	14.3		μg/L	1	0.09

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L011MW	1/21/2005	SW8260	trans-1,2-DCE	156-60-5	FD	12.2		μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	FD	0.07	U	μg/L	1	0.07
			SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	FD	0.17	U	μg/L	1	0.17
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	FD	0.21	U	μg/L	1	0.21
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13L027MW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L027MW	1/21/2005	SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	Ν	0.13	U	μg/L	1	0.13
			SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	Ν	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	Ν	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.2	F	μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	Ν	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	Ν	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	Ν	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	Ν	80.0	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	Ν	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	Ν	80.0	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	Ν	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	Ν	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	Ν	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	Ν	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	Ν	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	Ν	0.09	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	Ν	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	Ν	6.58		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13L027MW	1/21/2005	SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	Ν	0.09	U	μg/L	1	0.09
			SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	Ν	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	13O005EW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
			SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
			SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
			SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
			SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
			SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
			SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
			SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
			SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
			SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
			SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
			SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
			SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
			SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
			SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
			SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
			SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
			SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
			SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
			SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
			SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
			SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
			SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
			SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
			SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13

APPENDIX A
Summary of Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13O005EW	1/21/2005	SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
			SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
			SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
			SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
			SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
			SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
			SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
			SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
			SW8260	cis-1,2-DCE	156-59-2	N	0.36	F	μg/L	1	0.1
			SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
			SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
			SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
			SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
			SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
			SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
			SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
			SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
			SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
			SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
			SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
			SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
			SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
			SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
			SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
			SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
			SW8260	PCE	127-18-4	N	0.1	F	μg/L	1	0.07
			SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
			SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
			SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
			SW8260	TCE	79-01-6	N	7.13		μg/L	1	0.1
			SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
			SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
			SW8260	trans-1,2-DCE	156-60-5	N	0.15	F	μg/L	1	0.09

APPENDIX A

Summary of Analytical Data, First Quarter 2005

LTO&M First Quarter 2005 Report, Beale Air Force Base, California

Site	Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
GTS											
Site 13	13O005EW	1/21/2005	SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
			SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
			SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21

Notes:

U = Not Detected.

FD = Field Duplicate.

N = Normal Sample.

Qualifier Description

B = The analyte was found in an associated blank, as well as in the sample.

F = The analyte was positively identified but the associated numerical value is below the reporting limit (RL). J = The analyte was positively identified, the quantitation is an estimate.

M = A matrix effect was present.

Appendix B
Site 10 Enhanced In Situ Bioremediation
Treatment System Monitoring Data

Long-term Operation and Maintenance First Quarter 2005 Report Appendix B

Site 10 Enhanced In Situ Bioremediation Treatment System Monitoring Data

Prepared for

Beale Air Force Base

July 2005

Redding, California 96001

Contents

B-2

Section		
Acronyn	s and Abbreviations	ix
Site 10 E	SB Treatment System Monitoring Data	B-1
В		
В		
	B.2.1 Chlorinated Volatile Organic Compounds	
	B.2.2 Dissolved Hydrocarbon Gases, Dissolved Manganese, and	
	Volatile Fatty Acids	B-2
	B.2.3 Field Parameters	B-2
В	3 Compliance Monitoring Wells	B-2
	B.3.1 Chlorinated Volatile Organic Compounds	B-3
	B.3.2 Dissolved Hydrocarbon Gases, Dissolved Manganese, and	
	Volatile Fatty Acids	B-3
	B.3.3 Field Parameters	B-3
В	4 Work Cited	B-4
	Tables	
B-1 E	RP Site 10 EISB Treatment System - Transect 1 Well Identification and	

Page

Figures

B-1	EISB Treatment System Layout and Sample Locations, Transect 1	B-15
B-2	Results of Post-Recirculation Sampling	B-17

Summary of Detected Compounds in Well Samples, First Quarter 2005 B-4

RDD/051940007 (CLR2970.DOC)

Acronyms and Abbreviations

 $\mu g/L$ micrograms per liter

bgs below ground surface

CMW compliance monitoring well

DCE dichloroethene

MCL maximum contaminant level

mg/L milligrams per liter

ORP oxidation reduction potential

PCE tetrachloroethylene

TCA trichloroethane

TCE trichloroethylene

TECA tetrachloroethane

VOC volatile organic compound

RDD/051940007 (CLR2970.DOC)

APPENDIX B

Site 10 EISB Treatment System Monitoring Data

B.1 Project Overview

The Long-term Operation and Maintenance Project at Beale Air Force Base is performed through the Air Force Center for Environmental Excellence. This appendix provides a summary of the first quarter 2005 monitoring data collected for that project from the Site 10 enhanced in situ bioremediation (EISB) treatment system.

Transect 1 of the full-scale EISB treatment system at Site 10 was installed in 2004. As shown on Figure B-1 (all figures are located at the end of this report), the EISB treatment system currently consists of four extraction wells and eight injection wells. System performance and compliance is assessed with 10 performance monitoring wells (PMW) and seven compliance monitoring wells (CMW) (see Table B-1; all tables located at the end of this appendix). EISB is being used to treat chlorinated volatile organic compound (VOC) contamination in the groundwater source area (defined as groundwater with trichloroethylene [TCE] concentrations greater than 100 micrograms per liter [μ g/L]). The remedial action objectives are described in Section 5.6 of the *Site 10 Remedial Action Summary Report* (CH2M HILL, 2005).

The following sections discuss the analytical results and field analysis of groundwater samples collected at Site 10. The data have been divided into two categories according to the purpose of the well location, and performance and compliance monitoring.

Three rounds of groundwater samples were collected from wells associated with the EISB treatment system. The baseline event was conducted in July and August 2004, post-recirculation sampling was conducted January 17 through 20, 2005, and the quarterly sampling was conducted March 21, 22, and 23, 2005. The data from the March 2005 sampling event will be discussed in the second quarter 2005 report. Quarterly sampling will be conducted until the EISB treatment system is shut down. Table B-2 lists the analytes detected in groundwater. Time series plots of field and laboratory data for groundwater are presented in Attachment B1, and complete analytical results are provided in Attachment B2.

B.2 Injection, Extraction, and Performance Monitoring Wells

B.2.1 Chlorinated Volatile Organic Compounds

Figure B-2 presents results of the post-recirculation sampling conducted in January 2005. TCE was detected at a maximum concentration of 3,340 μ g/L in extraction well 10C031RW. TCE concentrations in the other extraction wells ranged from 169 to 2,270 μ g/L. Groundwater samples were not colleted from the injection wells during the January 2005 sampling event. TCE was detected in PMWs, with concentration values ranging from 11.9 to 1,740 μ g/L. The highest result was detected in 10C055RW. The lowest TCE concentrations were detected in PMWs 10C033RW and 10C040RW. These wells are screened near the top of a subsurface clay ridge running along the western portion of the site (see Figure B-2).

RDD/051940007 (CLR2970.DOC) B-1

The clay ridge serves as a significant groundwater boundary at Site 10 and limits the migration of contamination to the west.

The cis-1,2-dicloroethene (DCE) was detected at concentrations up to 393 $\mu g/L$ in extraction wells and up to 301 $\mu g/L$ in the PMWs. Trans-1,2-DCE was not detected above 1.90 $\mu g/L$ in extraction wells and PMWs. Vinyl chloride was detected at a concentration of 54 $\mu g/L$ in 10M004MW (PMW), a 29 percent increase over the August 2004 sample result. Well 10M004MW is located within the EISB pilot-test area (see Figure B-2). Vinyl chloride concentrations within the pilot-test area remain elevated because the reductive dechlorination of vinyl chloride to ethane is limited by the electron donor. Vinyl chloride was not detected outside the pilot-test area.

B.2.2 Dissolved Hydrocarbon Gases, Dissolved Manganese, and Volatile Fatty Acids

Dissolved hydrocarbon gases were detected at elevated concentrations in 10M004MW (a PMW) during the January 2005 sampling event. Methane, ethene, and ethane were detected at concentrations of 5,900, 50.6, and 32.7 $\mu g/L$, respectively. 10M004MW is in the pilot-test area. In the extraction wells and the other PMWs these constituents were detected at concentrations equal to or less than 1.7 $\mu g/L$.

Dissolved manganese was detected in 10M004MW at a concentration of 13 milligrams per liter (mg/L). In the extraction wells and the PMWs outside the pilot-test treatment area, dissolved manganese was detected at low concentrations (less than 0.04 mg/L).

Elevated volatile fatty acid concentrations were detected in 10M004MW during the January 2005 sampling event. Acetic acid and propionic acid were detected at concentrations of 34 and 9.06 mg/L, respectively. In the extraction wells and the remaining PMWs, volatile fatty acids were not detected or were detected at concentrations below the reporting limit (0.087 mg/L).

B.2.3 Field Parameters

During first quarter 2005, pH and oxidation reduction potential (ORP) measurements were typically collected monthly for most injection wells, extraction wells, and PMWs. At 10C040RW and 10C033RW, field measurements were only collected in January 2005. Measurements of pH ranged from 6.49 to 8.47. ORP measurements less than zero indicate an anaerobic reducing environment. Negative ORP was detected in wells 10C041RW, 10C038RW, 10C032RW, and 10M004MW. Wells 10C041RW, 10C038RW, and 10C032RW began first quarter 2005 with positive ORPs.

B.3 Compliance Monitoring Wells

This section discusses analytical results from samples collected in the five shallow CMWs. No samples were collected from the two deep CMWs during first quarter 2005. A proper baseline data set is still being collected from CMWs at Site 10. The January 2005 data is the second round of the eight necessary rounds needed to establish baseline values. Section 5.3.2.2 of the *Site 10 Remedial Action Summary Report* (CH2M HILL, 2005) documents

B-2 RDD/051940007 (CLR2970.DOC)

the method for evaluating compliance monitoring data for the Phase 1 EISB treatment system.

B.3.1 Chlorinated Volatile Organic Compounds

TCE concentrations varied greatly in the CMWs. 10C035RW, 10C050RW, and 10C051RW are located in areas of existing chlorinated VOC contamination. During January 2005 groundwater sampling, TCE was detected at concentrations of $32.6~\mu g/L$ in 10C035RW, $242~\mu g/L$ in 10C050RW, and $694~\mu g/L$ in 10C051RW. Compared to August 2004, TCE concentrations in 10C035RW and 10C050RW increased 29 and 24 percent, respectively. TCE concentrations in 10C051RW remained fairly stable between August 2004 and January 2005.

CMWs 10C003MW and 10M005MW are located in areas with TCE contaminations less than the Maximum Contaminant Level (MCL). In January 2005, TCE was not detected in well 10M005MW, but was detected in upgradient well 10C003MW (2.03 μ g/L).

During January 2005 groundwater sampling, cis-1,2-DCE and trans-1,2-DCE were not detected above reporting limits. Vinyl chloride was not detected in any of the January 2005 CMW groundwater samples.

Chlorinated VOC concentrations in CMWs show no apparent trends through January 2005 (see Attachment B1-1 and B1-2).

B.3.2 Dissolved Hydrocarbon Gases, Dissolved Manganese, and Volatile Fatty Acids

Dissolved methane was detected at low concentrations in all CMWs during the January 2005 sampling event. The concentrations ranged from 0.17 to 0.6 μ g/L. Ethane and ethene were detected at concentrations less than 0.1 μ g/L in 10C051RW and 10C050RW, respectively.

Dissolved manganese was detected at concentrations less than 0.06 mg/L in 10C035RW, 10C050RW, and 10C051RW.

At 10C050RW, acetic acid was detected below the reporting limit in a sample collected in January 2005. Because of the distance from Transect 1 and the failure to detect acetic or lactic acids in upgradient PMWs (10C055RW and 10C054RW), it is unlikely that electron donor amendment from the EISB treatment system is the source of the acetic acid. No volatile fatty acids were detected in the remaining CMWs.

None of the CMWs exhibited an existence of baseline for dissolved manganese or volatile fatty acids during first quarter 2005.

B.3.3 Field Parameters

In January and March 2005, ORP and pH measurements were collected from 10C051RW, 10C050RW, and 10C035RW. At 10C003MW, ORP and pH measurements were collected in March 2005. Measurements of pH ranged from 6.93 to 8.91. ORP CMW measurements during first quarter 2005 were positive, indicating that reducing conditions do not exist around the CMWs. Therefore, reducing conditions produced in the treatment zone have not impacted any of the CMWs.

RDD/051940007 (CLR2970.DOC)

B.4 Work Cited

CH2M HILL. 2005. Draft. Site10 Remedial Action Summary Report. March.

TABLE B-1
ERP Site 10 EISB Treatment System – Transect 1 Well Identification and Classification
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Well Type	Number of Wells	Well Identification
Extraction Wells	5	New - 10C030RW, 10C031RW, 10C032RW, and 10C045RW
		Existing – 10C024EW
Injection Wells	8	New – 10C034RW, 10C036RW, 10C037RW, 10C038RW, 10C039RW, 10C041RW, and 10C043RW
		Existing – 10C022IW
Performance Monitoring Wells	8	New - 10C047MW, 10C048MW, 10C049MW, 10C054RW, and 10C055RW
		Existing - 10C001MW, 10M004MW, and 10M006MW
Performance Monitoring Wells (Limited Monitoring)	2	New - 10C033RW and 10C040RW
Interim CMWs (Upper Zone)	5	New - 10C035RW, 10C050RW, and 10C051RW
		Existing – 10C003MW and 10M005MW
CMWs (Lower Zone)	2	Existing – 10L001MW and 10R001MW

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
Compliance Monitoring Well					
1/17/2005	31 to 51	10C003MW	Acetone	1.8 F	μg/L
			Methane	0.6	μg/L
			TCE	2.03	μg/L
3/21/2005			Bromoform	0.39 F	μg/L
			Dibromochloromethane	0.18 F	μg/L
			Methane	0.14 F	μg/L
			TCE	1.69	μg/L
1/18/2005	50 to 62	10C035RW	cis-1,2-DCE	2.54	μg/L
			Manganese, dissolved	0.0013 F	mg/L
			Methane	0.23 F	μg/L
			PCE	0.33 F	μg/L
			TCE	32.6	μg/L

B-4 RDD/051940007 (CLR2970.DOC)

TABLE B-2Summary of Detected Compounds in Well Samples, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data*

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
3/23/2005			Chloride	1.45	mg/L
			cis-1,2-DCE	3.59	μg/L
			Iron, dissolved	0.021 F	mg/L
			Manganese, dissolved	0.0261	mg/L
			Methane	0.21 F	μg/L
			Nitrate-N	2.33	mg/L
			PCE	0.4 F	μg/L
			Phosphate	0.3 F	mg/L
			Sulfate	2.97	mg/L
			Sulfide	1.4 F	mg/L
			TCE	44.2	μg/L
1/17/2005	32 to 52	10C050RW	Acetic acid	0.031 F	mg/L
			Chloroform	0.14 F	μg/L
			cis-1,2-DCE	1.87	μg/L
			Manganese, dissolved	0.0025 F	mg/L
			PCE	29.5	μg/L
			TCE	242	μg/L
1/18/2005			Methane	0.28 F	μg/L
3/22/2005			cis-1,2-DCE	1.51	μg/L
			Manganese, dissolved	0.0015 F	mg/L
			Methane	0.25 F	μg/L
			PCE	23.3	μg/L
			TCE	149	μg/L
1/20/2005	37 to 54	10C051RW	cis-1,2-DCE	8.42 F	μg/L
			Ethane	0.076 F	μg/L
			Manganese, dissolved	0.0557	mg/L
			Methane	0.2 F	μg/L
			PCE	42.7 F	μg/L
			TCE	694	μg/L
3/22/2005			Chloroform	0.85	μg/L
			cis-1,2-DCE	11	μg/L
			Manganese, dissolved	0.0006 F	mg/L
			Methane	0.16 F	μg/L
			PCE	50.7	μg/L
			TCE	736	μg/L
1/19/2005	23 to 42.5	10M005MW	Methane	0.17 F	μg/L
3/23/2005			Methane	0.12 F	μg/L

RDD/051940007 (CLR2970.DOC) B-5

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
Performance Monitoring Well					
1/17/2005	28 to 48	10C001MW	Acetic acid	0.041 F	mg/L
			Chloride	22.9	mg/L
			Chloroform	0.69 F	μg/L
			cis-1,2-DCE	301	μg/L
			Iron, dissolved	0.012 F	mg/L
			Lactic acid	0.027 F	mg/L
			Methane	0.38 F	μg/L
			Nitrate-N	1.52	mg/L
			PCE	74.3	μg/L
			Sulfate	9.98	mg/L
			TCE	993	μg/L
			trans-1,2-DCE	0.55 F	μg/L
3/21/2005			Chloride	23.4	mg/L
			Chloroform	0.74 F	μg/L
			cis-1,2-DCE	342	μg/L
			Iron, dissolved	0.008 F	mg/L
			Manganese, dissolved	0.0012 F	mg/L
			Methane	0.23 F	μg/L
			Nitrate-N	1.27	mg/L
			PCE	91.3	μg/L
			Phosphate	0.08 F	mg/L
			Sulfate	6.38	mg/L
			TCE	1,000	μg/L
1/18/2005	33 to 43	10C033RW	Acetone	1.2 F	μg/L
			cis-1,2-DCE	14.4	μg/L
			PCE	0.32 F	μg/L
			TCE	20.7	μg/L
1/18/2005	38 to 43	10C040RW	cis-1,2-DCE	12.3	μg/L
			TCE	11.9	μg/L
1/17/2005	32 to 52	10C047MW	Acetone	1.5 F	μg/L
			Chloride	48.5	mg/L
			cis-1,2-DCE	8.57	μg/L
			Iron, dissolved	0.008 F	mg/L
			Manganese, dissolved	0.0005 F	mg/L
			Methane	0.21 F	μg/L
			Nitrate-N	1.21	mg/L
			PCE	1.95	μg/L
			Sulfate	8.81	mg/L
			TCE	27	μg/L

B-6 RDD/051940007 (CLR2970.DOC)

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
3/21/2005			Acetone	6.5 F	μg/L
			Bromoform	0.7 F	μg/L
			Chloride	40.6	mg/L
			Chloroform	0.1 F	μg/L
			cis-1,2-DCE	6.97	μg/L
			Dibromochloromethane	0.25 F	μg/L
			Iron, dissolved	0.012 F	mg/L
			Methane	0.18 F	μg/L
			Nitrate-N	1.12	mg/L
			PCE	3.75	μg/L
			Phosphate	0.061 F	mg/L
			Sulfate	8.48	
			Sulfide	2.2	mg/L
					mg/L
			TCE	37.4	μg/L
4.440.0005	20.4.07	400040104	trans-1,2-DCE	0.87 F	μg/L
1/18/2005	32 to 67	10C048MW	1,1,2-TCA	0.34 F	μg/L
			Benzene	0.11 F	μg/L
			Chloride	9.15	mg/L
			Chloroform	1.41	μg/L
			cis-1,2-DCE	178	μg/L
			Ethane Iron, dissolved	0.21 F 0.021 F	μg/L
				0.021 F 0.004 F	mg/L
			Manganese, dissolved Methane	0.004 F 0.44 F	mg/L
			Nitrate-N	1.67	μg/L mg/L
			PCE	31.1	μg/L
			Sulfate	7.49	mg/L
			TCE	1,660	μg/L
			trans-1,2-DCE	0.51 F	μg/L
3/22/2005			Chloride	8.39	mg/L
-,,,,			Chloroform	0.47	μg/L
			cis-1,2-DCE	126	μg/L
			Iron, dissolved	0.006 F	mg/L
			Methane	0.2 F	μg/L
			Nitrate-N	1.84	mg/L
			PCE	6.38	μg/L
			Phosphate	0.096 F	mg/L
			Sulfate	7.54	mg/L
			Sulfide	2.2	mg/L
			TCE	435	μg/L
			trans-1,2-DCE	0.32 F	μg/L

RDD/051940007 (CLR2970.DOC) B-7

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
1/17/2005	33 to 68	10C049MW	1,1,2-TCA	0.38 F	μg/L
			Benzene	0.09 F	μg/L
			Chloride	27.7	mg/L
			Chloroform	0.86	μg/L
			cis-1,2-DCE	146	μg/L
			Ethane	0.31 F	μg/L
			Iron, dissolved	0.006 F	mg/L
			Manganese, dissolved	0.0009 F	mg/L
			Methane	0.57 F	μg/L
			Nitrate-N	1.19	mg/L
			PCE	19.9	μg/L
			Phosphate	0.051 F	mg/L
			Sulfate	12.4	mg/L
			TCE	716	μg/L
			trans-1,2-DCE	0.19 F	μg/L
3/21/2005			1,1,2-TCA	0.41 F	μg/L
			Chloride	30	mg/L
			Chloroform	0.74	μg/L
			cis-1,2-DCE	155	μg/L
			Ethane	0.085 F	μg/L
			Iron, dissolved	0.009 F	mg/L
			Methane	0.28 F	μg/L
			Nitrate-N	1.29	mg/L
			PCE	16	μg/L
			Phosphate	0.07 F	mg/L
			Sulfate	11.1	mg/L
			Sulfide TCE	2.2 603	mg/L
			trans-1,2-DCE	1.46 F	μg/L
1/17/2005	240.4 to 260.4	10C054RW		1.6 F	μg/L
1/17/2005	240.4 10 200.4	10C054RVV	Acetone		μg/L
			Chloride	9.3	mg/L
			Chloroform	0.75	μg/L
			cis-1,2-DCE	5.93	μg/L
			Iron, dissolved	0.009 F	mg/L
			Manganese, dissolved	0.0022 F	mg/L
			Methane	0.27 F	μg/L
			Nitrate-N	1.82	mg/L
			PCE	93.9	μg/L
			Sulfate	3.81	mg/L
			TCE	696	μg/L
			. JL	030	μg/L

B-8 RDD/051940007 (CLR2970.DOC)

TABLE B-2Summary of Detected Compounds in Well Samples, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data*

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
3/22/2005			Chloride	9.55	mg/L
			Chloroform	0.72	μg/L
			cis-1,2-DCE	6.06	μg/L
			Iron, dissolved	0.007 F	mg/L
			Manganese, dissolved	0.001 F	mg/L
			Methane	0.19 F	μg/L
			Nitrate-N	1.81	mg/L
			PCE	92	μg/L
			Phosphate	0.15 F	mg/L
			Sulfate	3.72	mg/L
			Sulfide	5	mg/L
			TCE	611	μg/L
1/17/2005	275 to 295	10C055RW	1,1,1,2-TECA	0.58	μg/L
			1,1,2-TCA	1.29	μg/L
			1,1-DCE	0.17 F	μg/L
			Acetone	1.4 F	μg/L
			Chloride	25.7	mg/L
			Chloroform	1.06	μg/L
			cis-1,2-DCE	88.5 F	μg/L
			Manganese, dissolved	0.0273	mg/L
			Nitrate-N	1.84	mg/L
			PCE	147	μg/L
			Sulfate	7.62	mg/L
			TCE	1,740	μg/L
			trans-1,2-DCE	0.15 F	μg/L
			Ethane	0.82	μg/L
) (00 (000 F			Methane	1.51	μg/L
3/22/2005			1,1,2-TCA	0.99 F	μg/L
			Chloride	23.4	mg/L
			Chloroform	1.16 F	μg/L
			cis-1,2-DCE	102	μg/L
			Ethane	0.3 F	μg/L
			Iron, dissolved	0.024 F	mg/L
			Manganese, dissolved	0.0239	mg/L
			Methane	0.44 F	μg/L
			Nitrate-N	1.88	mg/L
			PCE	165	μg/L
			Phosphate	0.05 F	mg/L
			Sulfate	6.98	mg/L
			Sulfide	4.2	mg/L
			TCE	1,570	μg/L

RDD/051940007 (CLR2970.DOC) B-9

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005

LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
1/17/2005	36.4 to 56.4	10M004MW	1,1-DCE	0.15 F	μg/L
			Acetic acid	34	mg/L
			Bromoform	0.13 F	μg/L
			Chloride	20.2	mg/L
			cis-1,2-DCE	181	μg/L
			Dibromochloromethane	0.19 F	μg/L
			Ethane	32.7	
					μg/L
			Iron, dissolved	2.64	mg/L
			Manganese, dissolved	13	mg/L
			Methane	5,900	μg/L
			PCE	0.4 F	μg/L
			Propionic acid	9.06	mg/L
			Sulfate	0.24 F	mg/L
			TCE	34.3	μg/L
			trans-1,2-DCE	1.04	μg/L
			Vinyl chloride	54	μg/L
3/21/2005			Acetic acid	46.2	mg/L
0/21/2000			Acetone	23.4	μg/L
			Benzene	0.07 F	μg/L
			Chloride	20	mg/L
			cis-1,2-DCE	0.5 F	μg/L
			Ethane	47.2	μg/L
			Iron, dissolved	3.14	mg/L
			Lactic acid	1.53	mg/L
			Manganese, dissolved	8.31	mg/L
			MEK (2-Butanone)	41.2	μg/L
			Methane	16700	μg/L
			Propionic acid	51.3	mg/L
			Sulfate	0.035 F	mg/L
			Sulfide	3	mg/L
			TCE	0.1 F	μg/L
			Toluene	0.21 F	μg/L
			trans-1,2-DCE	0.16 F	μg/L
			Vinyl chloride	2.24	μg/L
1/18/2005	46 to 65.5	10M006MW	Bromoform	1.5 F	μg/L
1/10/2005	40 to 00.0	TOWOOOWW	Chloride	2.85	mg/L
			Chloroform	0.19 F	μg/L
			cis-1,2-DCE	34.4	μg/L
			Dibromochloromethane	3.34 F	μg/L
			Methane	0.21 F	μg/L
			Nitrate-N	2.51	mg/L
			PCE	1.98	μg/L

B-10 RDD/051940007 (CLR2970.DOC)

TABLE B-2Summary of Detected Compounds in Well Samples, First Quarter 2005 *LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data*

Date	Screen Interval (feet bgs)	Sample Location	Analyte	Result	Units
			TCE	157	μg/L
			trans-1,2-DCE	0.1 F	μg/L
3/22/2005			Chloride	2.68	mg/L
			Chloroform	0.15 F	μg/L
			cis-1,2-DCE	25.3	μg/L
			Iron, dissolved	0.013 F	mg/L
			Manganese, dissolved	0.0009 F	mg/L
			Methane	0.15 F	μg/L
			Nitrate-N	2.44	mg/L
			PCE	1.76	μg/L
			Phosphate	0.051 F	mg/L
			Sulfate	4.1	mg/L
			Sulfide TCE	1.8 F 139	mg/L
			trans-1,2-DCE	0.12 F	μg/L μg/L
Monitoring Well			tians 1,2 DOL	0.121	μg/ <u> </u>
1/18/2005	90 to 110	10C006MW	Acetone	1.2 F	μg/L
			TCE	1.38	μg/L
1/19/2005	38.62 to 58.62	10C009MW	Bromoform	0.18 F	μg/L
			Chloroform	0.11 F	μg/L
			cis-1,2-DCE	0.36 F	μg/L
			PCE	1.13	μg/L
			TCE	44.3	μg/L
1/19/2005	46.5 to 61.5	10R004MW	PCE	0.18 F	μg/L
			TCE	5.74	μg/L
Extraction Wells					
1/19/2005	40 to 58	10C030RW	Acetone	1.8 F	μg/L
			Chloroform	0.56	μg/L
			cis-1,2-DCE	393	μg/L
			Methane	0.21 F	μg/L
			PCE	7	μg/L
			TCE	180	μg/L
			trans-1,2-DCE	1.16	μg/L
3/23/2005			Chloroform	0.59	μg/L
			cis-1,2-DCE	323	μg/L
			Methane	0.19 F	μg/L
			PCE	15.3	μg/L
			TCE	212	μg/L
			trans-1,2-DCE	2.04	μg/L

RDD/051940007 (CLR2970.DOC) B-11

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval Sample Date (feet bgs) Location		Analyte	Result	Units
1/19/2005	43 to 63	10C031RW	Chloride	12	mg/L
			Chloroform	1.38 F	μg/L
			cis-1,2-DCE	107	μg/L
			Iron, dissolved	0.019 F	Mg/L
			Manganese, dissolved	0.0022 F	mg/L
			Methane	0.25 F	μg/L
			Nitrate-N	1.88	mg/L
			PCE	231	μg/L
			Phosphate	0.036 F	mg/L
			Sulfate	6.98	mg/L
			TCE	3,340	μg/L
3/23/2005			cis-1,2-DCE	176	μg/L
			Methane	0.22 F	μg/L
			PCE	190	μg/L
			TCE	2,920	μg/L
1/19/2005	43 to 63	10C032RW	Bromoform	1.82 F	μg/L
			Chloride	9.79	mg/L
			Chloroform	2.26 F	μg/L
			cis-1,2-DCE	351	μg/L
			Ethane	0.064 F	μg/L
			Iron, dissolved	0.011 F	mg/L
			Manganese, dissolved	0.0049 F	mg/L
			Methane	0.34 F	μg/L
			Nitrate-N	1.48	mg/L
			PCE	55.7	μg/L
			Phosphate	0.048 F	mg/L
			Sulfate	6.62	mg/L
			TCE	2,720	μg/L
			trans-1,2-DCE	1.89 F	μg/L
3/23/2005			Chloroform	1.5	μg/L
			cis-1,2-DCE	223	μg/L
			Iron, dissolved	0.014 F	mg/L
			Methane	0.28 F	μg/L
			PCE	66.1	μg/L
			Sulfide	1.4 F	mg/L
			TCE		
				1,830	μg/L
			trans-1,2-DCE	0.77 F	μg/L

B-12 RDD/051940007 (CLR2970.DOC)

TABLE B-2
Summary of Detected Compounds in Well Samples, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Screen Interval Sample (feet bgs) Location		Analyte	Result	Units
3/31/2005			Chloride	11.9	mg/L
			Nitrate-N	1.7	mg/L
			Sulfate	8.09	mg/L
1/19/2005	47 to 62	10C045RW	Chloroform	0.2 F	μg/L
			cis-1,2-DCE	36.9	μg/L
			Methane	0.2 F	μg/L
			PCE	2.12	μg/L
			TCE	169	μg/L
			trans-1,2-DCE	0.13 F	μg/L
3/23/2005			Chloroform	0.16 F	μg/L
			cis-1,2-DCE	27.6	μg/L
			Lactic acid	1.49	mg/L
			Methane	0.13 F	μg/L
			PCE	1.66	μg/L
			TCE	124	μg/L
			trans-1,2-DCE	0.15 F	μg/L

Notes:

Results shown in **bold** exceed the state MCL.

bgs = below ground surface

F = The analyte was positively identified, but the associated numerical value is at or below the reporting limit.

MEK = methylethyl ketone
PCE = tetrachloroethylene
TCA = trichloroethane
TECA = tetrachloroethane

RDD/051940007 (CLR2970.DOC) B-13

This page intentionally left blank.

B-14 RDD/051940007 (CLR2970.DOC)

LEGEND

COMPONENTS OF EISB SYSTEM (YEAR 1):

- INJECTION WELL
- PERFORMANCE MONITORING WELL
- COMPLIANCE MONITORING WELL (UPPER ZONE)
- COMPLIANCE MONITORING WELL (LOWER ZONE)
- MONITORING WELL
- ⊕ SOIL VAPOR EXTRACTION WELL
- LACTATE/AIR CONVEYANCE
- GROUNDWATER CONVEYANCE
- CONTROL SHED
- LACTATE STORAGE SHED

FIGURE B-1 SITE 10 EISB TREATMENT SYSTEM LAYOUT AND SAMPLE LOCATIONS, TRANSECT 1

Location: 10C050RW **Maximum Value:** 242

Location: 10M005MW Maximum Value: 0.07

NOTES:

- 1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.
- 2. TCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-1 (PAGE 1 of 2) TCE CONCENTRATION VERSUS TIME AT SITE 10 COMPLIANCE WELLS

NOTES:

1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.

2. TCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-1 (PAGE 2 of 2) TCE CONCENTRATION VERSUS TIME AT SITE 10 COMPLIANCE WELLS

Location: 10C035RW Maximum Value: 2.54

NOTES:

- 1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.
- 2. CIS-1,2-DCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-2 (PAGE 1 of 2) CIS-1,2-DCE CONCENTRATION VERSUS TIME AT SITE 10 COMPLIANCE WELLS

Location: 10R001MW Maximum Value: 0.09

NOTES:

1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.

2. CIS-1,2-DCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-2 (PAGE 2 of 2) CIS-1,2-DCE CONCENTRATION VERSUS TIME AT SITE 10 COMPLIANCE WELLS

Location: 10C047MW Maximum Value: 189

NOTES:

- 1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.
- 2. TCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-3 (PAGE 1 of 3) TCE CONCENTRATION VERSUS TIME AT SITE 10 PERFORMANCE WELLS

Location: 10C048MW Maximum Value: 1660

Location: 10M004MW Maximum Value: 36.7

Location: 10C049MW Maximum Value: 1490

Location: 10M006MW Maximum Value: 232

NOTES:

1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.

2. TCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-3 (PAGE 2 of 3) TCE CONCENTRATION VERSUS TIME AT SITE 10 PERFORMANCE WELLS

Location: 10C033RW Maximum Value: 20.7

NOTES:

1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.

2. TCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-3 (PAGE 3 of 3) TCE CONCENTRATION VERSUS TIME AT SITE 10 PERFORMANCE WELLS

Location: 10C001MW Maximum Value: 301

Location: 10C040RW Maximum Value: 12.3

NOTES:

- 1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE
- 2. CIS-1,2-DCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-4 (PAGE 1 of 3) **CIS-1,2-DCE CONCENTRATION VERSUS** TIME AT SITE 10 PERFORMANCE WELLS

Location: 10C045RW Maximum Value: 38.1

Location: 10C048MW Maximum Value: 178

Location: 10C047MW **Maximum Value:** 146

Location: 10C049MW **Maximum Value:** 146

NOTES:

- 1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE
- 2. CIS-1,2-DCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-4 (PAGE 2 of 3) CIS-1,2-DCE CONCENTRATION VERSUS TIME AT SITE 10 PERFORMANCE WELLS

Location: 10M004MW

Maximum Value: 181

NOTES:

1. AN OPEN SYMBOL REPRESENTS A NONDETECT VALUE.

2. CIS-1,2-DCE VALUES REPRESENT CONCENTRATIONS IN GROUNDWATER (MICROGRAMS PER LITER).

ATTACHMENT B1-4 (PAGE 3 of 3) CIS-1,2-DCE CONCENTRATION VERSUS TIME AT SITE 10 PERFORMANCE WELLS

Attachment B2 Site 10 EISB Treatment System, Validated Analytical Data, First Quarter 2005

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C003MW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	Ν	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	Ν	0.031	U	μg/L	0.75	0.031
		RSK-175	Ethene	74-85-1	N	0.031	U	μg/L	0.76	0.031
		RSK-175	Methane	74-82-8	Ν	0.6		μg/L	0.56	0.018
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	Ν	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	Ν	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	80.0	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	Ν	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	Ν	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	Ν	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	1.8	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	Compliance Monitorin	ng Well Results								
10C003MW	1/17/2005	SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	Ν	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	Ν	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	80.0	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	0.1	U	μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	2.03	-	μg/L	1	0.1
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	0.07	U	μg/L	1	0.07

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Compliance Monitorir	ng Well Results								
10C003MW	1/17/2005	SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Bromide	BROMIDE	N	0.0072	U	mg/L	0.5	0.0072
	3/21/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	Ν	0.032	U	μg/L	0.78	0.032
		RSK-175	Ethene	74-85-1	Ν	0.033	U	μg/L	0.79	0.033
		RSK-175	Methane	74-82-8	Ν	0.14	F	μg/L	0.58	0.019
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0006	U	mg/L	0.01	0.0006
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	Ν	80.0	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C003MW	3/21/2005	SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	Ν	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.39	F	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	0.06	U	μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.18	F	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Compliance Monitorir	g Well Results								
10C003MW	3/21/2005	SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	1.69		μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
10C035RW	1/18/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.034	U	μg/L	0.83	0.034
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.84	0.035
		RSK-175	Methane	74-82-8	N	0.23	F	μg/L	0.62	0.02
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0013	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	Ν	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C035RW	1/18/2005	SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	Ν	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	2.54		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	Compliance Monitorin	g Well Results								
10C035RW	1/18/2005	SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	80.0	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	32.6		μg/L	1	0.1
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	0.33	F	μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Bromide	BROMIDE	N	0.0072	U	mg/L	0.5	0.0072
	3/23/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.035	U	μg/L	0.85	0.035
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.85	0.035
		RSK-175	Methane	74-82-8	N	0.21	F	μg/L	0.63	0.02
		SW6010	Iron, dissolved	7439-89-6_D	N	0.021	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0261		mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	Ü	μg/L	1	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C035RW	3/23/2005	SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	3.59		μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Compliance Monitorin	g Well Results								
10C035RW	3/23/2005	SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	Ν	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	Ν	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	Ν	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	44.2		μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	0.4	F	μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
		SW9030	Sulfide	SULFIDE	N	1.4	F	mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	1.45		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	N	2.33		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.3	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	2.97		mg/L	1	0.008
10C050RW	1/17/2005	E300.0M	Acetic Acid	64-19-7	FD	0.045	F	mg/L	0.1	0.021
		E300.0M	Acetic Acid	64-19-7	N	0.031	F	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Lactic Acid	50-21-5	FD	0.0083	U	mg/L	0.1	0.0083

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C050RW	1/17/2005	E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		E300.0M	Propionic Acid	79-09-4	FD	0.022	F	mg/L	0.1	0.01
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0025	F	mg/L	0.01	0.0003
		SW6010	Manganese, dissolved	7439-96-5_D	FD	0.0025	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	FD	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,1,1-TCA	71-55-6	FD	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	FD	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	Ν	0.14	U	μg/L	1	0.14
		SW8260	1,1,2-TCA	79-00-5	FD	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCA	75-34-3	FD	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	FD	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2,3-Trichloropropane	96-18-4	FD	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	FD	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	Ν	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCA	107-06-2	FD	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	FD	0.11	U	μg/L	1	0.11
		SW8260	1,2-DCB	95-50-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	FD	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C050RW	1/17/2005	SW8260	1,2-Dichloropropane	78-87-5	FD	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,2-EDB	106-93-4	FD	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	FD	0.08	U	μg/L	1	0.08
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	FD	0.1	U	μg/L	1	0.1
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	FD	0.09	U	μg/L	0.4	0.09
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	FD	0.13	U	μg/L	0.5	0.13
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	FD	0.06	U	μg/L	1	0.06
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	FD	0.12	U	μg/L	1	0.12
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	FD	0.08	U	μg/L	1	0.08
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	4-Chlorotoluene	106-43-4	FD	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
		SW8260	Acetone	67-64-1	FD	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Benzene	71-43-2	FD	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromobenzene	108-86-1	FD	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	FD	0.13	U	μg/L	1	0.13
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	FD	0.12	U	μg/L	0.5	0.12
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromoform	75-25-2	FD	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Bromomethane	74-83-9	FD	0.23	U	μg/L	3	0.23

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorii	ng Well Results								
0C050RW	1/17/2005	SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Carbon Tetrachloride	56-23-5	FD	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Chlorobenzene	108-90-7	FD	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroethane	75-00-3	FD	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.14	F	μg/L	0.3	0.13
		SW8260	Chloroform	67-66-3	FD	0.14	F	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	Chloromethane	74-87-3	FD	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	FD	2.12		μg/L	1	0.1
		SW8260	cis-1,2-DCE	156-59-2	N	1.87		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	FD	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromochloromethane	124-48-1	FD	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dibromomethane	74-95-3	FD	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Dichlorodifluoromethane	75-71-8	FD	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Ethylbenzene	100-41-4	FD	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Hexachlorobutadiene	87-68-3	FD	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	FD	0.08	U	μg/L	1	0.08
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	m,p-Xylene	108-38-3/1	FD	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	MEK (2-Butanone)	78-93-3	FD	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	FD	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
\D\D\									EA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C050RW	1/17/2005	SW8260	Methylene Chloride	75-09-2	FD	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.1	U	μg/L	10	0.1
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	FD	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	Ν	0.05	U	μg/L	1	0.05
		SW8260	Naphthalene	91-20-3	FD	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Butylbenzene	104-51-8	FD	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	FD	0.08	U	μg/L	1	0.08
		SW8260	n-Propylbenzene	103-65-1	N	80.0	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	o-Xylene	95-47-6	FD	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	FD	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	sec-Butylbenzene	135-98-8	FD	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	80.0	U	μg/L	1	0.08
		SW8260	Styrene	100-42-5	FD	80.0	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	242		μg/L	10	0.99
		SW8260	TCE	79-01-6	FD	240		μg/L	10	0.99
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	FD	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	29.5		μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	FD	32.9		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	FD	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	FD	0.09	U	μg/L	1	0.09
		SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	FD	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Trichlorofluoromethane	75-69-4	FD	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW8260	Vinyl Chloride	75-01-4	FD	0.21	U	μg/L	1	0.21
2\D\D									EA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Compliance Monitorir	ng Well Results								
10C050RW	1/17/2005	SW9056	Bromide	BROMIDE	N	0.0072	U	mg/L	0.5	0.0072
		SW9056	Bromide	BROMIDE	FD	0.0072	U	mg/L	0.5	0.0072
	1/18/2005	RSK-175	Ethane	74-84-0	FD	0.035	U	μg/L	0.85	0.035
		RSK-175	Ethane	74-84-0	N	0.033	U	μg/L	0.8	0.033
		RSK-175	Ethene	74-85-1	FD	0.048	F	μg/L	0.85	0.035
		RSK-175	Ethene	74-85-1	N	0.045	F	μg/L	0.81	0.034
		RSK-175	Methane	74-82-8	FD	0.29	F	μg/L	0.64	0.02
		RSK-175	Methane	74-82-8	N	0.28	F	μg/L	0.6	0.019
	3/22/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	Ν	0.035	U	μg/L	0.84	0.035
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.84	0.035
		RSK-175	Methane	74-82-8	N	0.25	F	μg/L	0.63	0.02
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0015	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C050RW	3/22/2005	SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	1.51		μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	g Well Results								
10C050RW	3/22/2005	SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	149		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	23.3		μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
10C051RW	1/20/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.076	F	μg/L	0.83	0.034
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.84	0.035
		RSK-175	Methane	74-82-8	N	0.2	F	μg/L	0.63	0.02
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0557		mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	4.58	U	μg/L	25	4.58
		SW8260	1,1,1-TCA	71-55-6	N	5.29	U	μg/L	50	5.29
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	5.7	U	μg/L	25	5.7
		SW8260	1,1,2-TCA	79-00-5	N	6.85	U	μg/L	50	6.85
		SW8260	1,1-DCA	75-34-3	N	6.58	U	μg/L	50	6.58
		SW8260	1,1-DCE	75-35-4	N	6.26	U	μg/L	50	6.26
		SW8260	1,1-Dichloropropene	563-58-6	N	3.48	U	μg/L	50	3.48
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	3.73	U	μg/L	50	3.73
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	5.43	U	μg/L	50	5.43
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	3.9	U	μg/L	50	3.9
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	3.63	U	μg/L	50	3.63
		SW8260	1,2-DCA	107-06-2	N	5.04	U	μg/L	25	5.04
		SW8260	1,2-DCB	95-50-1	N	5.33	U	μg/L	50	5.33

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10C051RW	1/20/2005	SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	5.8	U	μg/L	100	5.8
		SW8260	1,2-Dichloropropane	78-87-5	Ν	5.95	U	μg/L	50	5.95
		SW8260	1,2-EDB	106-93-4	Ν	4.3	U	μg/L	50	4.3
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	4.25	U	μg/L	50	4.25
		SW8260	1,3-DCB	541-73-1	N	5.13	U	μg/L	50	5.13
		SW8260	1,3-Dichloropropane	142-28-9	Ν	4.34	U	μg/L	20	4.34
		SW8260	1,4-DCB	106-46-7	Ν	6.66	U	μg/L	25	6.66
		SW8260	1-Chlorohexane	544-10-5	Ν	3.15	U	μg/L	50	3.15
		SW8260	2,2-Dichloropropane	594-20-7	Ν	5.82	U	μg/L	50	5.82
		SW8260	2-Chlorotoluene	95-49-8	Ν	4.13	U	μg/L	50	4.13
		SW8260	4-Chlorotoluene	106-43-4	N	3.71	U	μg/L	50	3.71
		SW8260	Acetone	67-64-1	N	31.9	U	μg/L	500	31.9
		SW8260	Benzene	71-43-2	N	3.62	U	μg/L	20	3.62
		SW8260	Bromobenzene	108-86-1	N	5.5	U	μg/L	50	5.5
		SW8260	Bromochloromethane	74-97-5	N	6.61	U	μg/L	50	6.61
		SW8260	Bromodichloromethane	75-27-4	N	5.95	U	μg/L	25	5.95
		SW8260	Bromoform	75-25-2	N	3.82	U	μg/L	50	3.82
		SW8260	Bromomethane	74-83-9	N	11.38	U	μg/L	150	11.38
		SW8260	Carbon Tetrachloride	56-23-5	N	3.94	U	μg/L	50	3.94
		SW8260	Chlorobenzene	108-90-7	N	6.22	U	μg/L	25	6.22
		SW8260	Chloroethane	75-00-3	N	10.09	U	μg/L	50	10.09
		SW8260	Chloroform	67-66-3	N	6.29	U	μg/L	15	6.29
		SW8260	Chloromethane	74-87-3	N	7.25	U	μg/L	50	7.25
		SW8260	cis-1,2-DCE	156-59-2	N	8.42	F	μg/L	50	4.76
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	5.13	U	μg/L	25	5.13
		SW8260	Dibromochloromethane	124-48-1	N	4.51	U	μg/L	25	4.51
		SW8260	Dibromomethane	74-95-3	N	5.73	U	μg/L	50	5.73
		SW8260	Dichlorodifluoromethane	75-71-8	N	6.61	U	μg/L	50	6.61
		SW8260	Ethylbenzene	100-41-4	Ν	3.93	U	μg/L	50	3.93
		SW8260	Hexachlorobutadiene	87-68-3	N	4.72	U	μg/L	30	4.72
		SW8260	Isopropylbenzene	98-82-8	N	3.9	U	μg/L	50	3.9
		SW8260	m,p-Xylene	108-38-3/1	N	6.84	U	μg/L	100	6.84
		SW8260	MEK (2-Butanone)	78-93-3	Ν	9.4	U	μg/L	500	9.4

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	Compliance Monitorin	g Well Results								
10C051RW	1/20/2005	SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	7.48	U	μg/L	250	7.48
		SW8260	Methylene Chloride	75-09-2	N	9.9	U	μg/L	50	9.9
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	7.4	U	μg/L	500	7.4
		SW8260	Naphthalene	91-20-3	N	2.64	U	μg/L	50	2.64
		SW8260	n-Butylbenzene	104-51-8	N	4.4	U	μg/L	50	4.4
		SW8260	n-Propylbenzene	103-65-1	N	3.79	U	μg/L	50	3.79
		SW8260	o-Xylene	95-47-6	N	4.44	U	μg/L	50	4.44
		SW8260	p-Isopropyltoluene	99-87-6	N	4.49	U	μg/L	50	4.49
		SW8260	sec-Butylbenzene	135-98-8	N	3.73	U	μg/L	50	3.73
		SW8260	Styrene	100-42-5	N	4.11	U	μg/L	50	4.11
		SW8260	TCE	79-01-6	N	694		μg/L	50	4.93
		SW8260	Tert-Butylbenzene	98-06-6	N	3.48	U	μg/L	50	3.48
		SW8260	Tetrachloroethylene	127-18-4	N	42.7	F	μg/L	50	3.62
		SW8260	Toluene	108-88-3	N	3.94	U	μg/L	50	3.94
		SW8260	trans-1,2-DCE	156-60-5	N	4.72	U	μg/L	50	4.72
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	3.28	U	μg/L	50	3.28
		SW8260	Trichlorofluoromethane	75-69-4	N	8.7	U	μg/L	50	8.7
		SW8260	Vinyl Chloride	75-01-4	N	10.43	U	μg/L	50	10.43
	3/22/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.035	U	μg/L	0.84	0.035
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.85	0.035
		RSK-175	Methane	74-82-8	N	0.16	F	μg/L	0.63	0.02
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0006	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.13	U	μg/L	1.1	0.13
		SW8260	1,1,1-TCA	71-55-6	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.12	U	μg/L	1.1	0.12
		SW8260	1,1,2-TCA	79-00-5	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,1-DCE	75-35-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,1-Dichloropropene	563-58-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.2	U	μg/L	2.2	0.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	– Compliance Monitorir	ng Well Results								
10C051RW	3/22/2005	SW8260	1,2,3-Trichloropropane	96-18-4	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.1	U	μg/L	2.2	0.1
		SW8260	1,2-DCA	107-06-2	Ν	0.19	U	μg/L	1.1	0.19
		SW8260	1,2-DCB	95-50-1	Ν	0.13	U	μg/L	2.2	0.13
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.26	U	μg/L	4.4	0.26
		SW8260	1,2-Dichloropropane	78-87-5	N	0.09	U	μg/L	2.2	0.09
		SW8260	1,2-EDB	106-93-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,3-DCB	541-73-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,3-Dichloropropane	142-28-9	N	0.11	U	μg/L	0.9	0.11
		SW8260	1,4-DCB	106-46-7	N	0.15	U	μg/L	1.1	0.15
		SW8260	1-Chlorohexane	544-10-5	N	0.13	U	μg/L	2.2	0.13
		SW8260	2,2-Dichloropropane	594-20-7	N	0.2	U	μg/L	2.2	0.2
		SW8260	2-Chlorotoluene	95-49-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	4-Chlorotoluene	106-43-4	N	0.13	U	μg/L	2.2	0.13
		SW8260	Acetone	67-64-1	N	1	U	μg/L	22	1
		SW8260	Benzene	71-43-2	N	0.14	U	μg/L	0.9	0.14
		SW8260	Bromobenzene	108-86-1	N	0.16	U	μg/L	2.2	0.16
		SW8260	Bromochloromethane	74-97-5	N	0.2	U	μg/L	2.2	0.2
		SW8260	Bromodichloromethane	75-27-4	N	0.16	U	μg/L	1.1	0.16
		SW8260	Bromoform	75-25-2	N	0.18	U	μg/L	2.2	0.18
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	6.6	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.12	U	μg/L	2.2	0.12
		SW8260	Chlorobenzene	108-90-7	N	0.15	U	μg/L	1.1	0.15
		SW8260	Chloroethane	75-00-3	N	0.07	U	μg/L	2.2	0.07
		SW8260	Chloroform	67-66-3	N	0.85		μg/L	0.7	0.19
		SW8260	Chloromethane	74-87-3	N	0.09	U	μg/L	2.2	0.09
		SW8260	cis-1,2-DCE	156-59-2	N	11		μg/L	2.2	0.13
		SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.15	U	μg/L	1.1	0.15
		SW8260	Dibromochloromethane	124-48-1	Ν	0.07	U	μg/L	1.1	0.07
		SW8260	Dibromomethane	74-95-3	N	0.19	U	μg/L	2.2	0.19
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.12	U	μg/L	2.2	0.12

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorin	g Well Results								_
10C051RW	3/22/2005	SW8260	Ethylbenzene	100-41-4	N	0.12	U	μg/L	2.2	0.12
		SW8260	Hexachlorobutadiene	87-68-3	N	0.16	U	μg/L	1.3	0.16
		SW8260	Isopropylbenzene	98-82-8	N	0.11	U	μg/L	2.2	0.11
		SW8260	m,p-Xylene	108-38-3/1	N	0.22	U	μg/L	4.4	0.22
		SW8260	MEK (2-Butanone)	78-93-3	N	0.6	U	μg/L	22	0.6
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.13	U	μg/L	11	0.13
		SW8260	Methylene Chloride	75-09-2	N	0.15	U	μg/L	2.2	0.15
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.4	U	μg/L	22	0.4
		SW8260	Naphthalene	91-20-3	N	0.14	U	μg/L	2.2	0.14
		SW8260	n-Butylbenzene	104-51-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	n-Propylbenzene	103-65-1	Ν	0.11	U	μg/L	2.2	0.11
		SW8260	o-Xylene	95-47-6	N	0.13	U	μg/L	2.2	0.13
		SW8260	p-Isopropyltoluene	99-87-6	Ν	0.09	U	μg/L	2.2	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	Styrene	100-42-5	Ν	0.11	U	μg/L	2.2	0.11
		SW8260	TCE	79-01-6	Ν	736		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	Ν	0.12	U	μg/L	2.2	0.12
		SW8260	Tetrachloroethylene	127-18-4	N	50.7		μg/L	2.2	0.17
		SW8260	Toluene	108-88-3	N	0.12	U	μg/L	2.2	0.12
		SW8260	trans-1,2-DCE	156-60-5	N	0.16	U	μg/L	2.2	0.16
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	Trichlorofluoromethane	75-69-4	N	0.14	U	μg/L	2.2	0.14
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	2.2	0.21
10M005MW	1/19/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.031	U	μg/L	0.76	0.031
		RSK-175	Ethene	74-85-1	N	0.032	U	μg/L	0.77	0.032
		RSK-175	Methane	74-82-8	N	0.17	F	μg/L	0.57	0.018
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorin	g Well Results								
10M005MW	1/19/2005	SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	Ν	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorir	ng Well Results								
10M005MW	1/19/2005	SW8260	cis-1,2-DCE	156-59-2	N	0.06	U	μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	Ν	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	Ν	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	Ν	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	Ν	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
		SW9056	Bromide	BROMIDE	Ν	0.0072	U	mg/L	0.5	0.0072
	3/23/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.034	U	μg/L	0.81	0.034

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorii	ng Well Results								
10M005MW	3/23/2005	RSK-175	Ethene	74-85-1	N	0.034	U	μg/L	0.82	0.034
		RSK-175	Methane	74-82-8	N	0.12	F	μg/L	0.61	0.019
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	Ν	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorii	ng Well Results								
10M005MW	3/23/2005	SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	0.06	U	μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2

Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005

LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Compliance Monitorii	ng Well Results								
10M005MW	3/23/2005	SW8260	Vinyl Chloride	75-01-4	N	0.09	U	µg/L	1	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -					-71					
10C001MW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.041	F	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	Ν	0.027	F	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	Ν	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	Ν	0.032	U	μg/L	0.77	0.032
		RSK-175	Ethene	74-85-1	Ν	0.032	U	μg/L	0.78	0.032
		RSK-175	Methane	74-82-8	Ν	0.38	F	μg/L	0.58	0.018
		SW6010	Iron, dissolved	7439-89-6_D	Ν	0.012	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	Ν	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.46	U	μg/L	2.5	0.46
		SW8260	1,1,1-TCA	71-55-6	Ν	0.53	U	μg/L	5	0.53
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.57	U	μg/L	2.5	0.57
		SW8260	1,1,2-TCA	79-00-5	Ν	0.68	U	μg/L	5	0.68
		SW8260	1,1-DCA	75-34-3	Ν	0.66	U	μg/L	5	0.66
		SW8260	1,1-DCE	75-35-4	Ν	0.63	U	μg/L	5	0.63
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.35	U	μg/L	5	0.35
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.37	U	μg/L	5	0.37
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.54	U	μg/L	5	0.54
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.39	U	μg/L	5	0.39
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.36	U	μg/L	5	0.36
		SW8260	1,2-DCA	107-06-2	Ν	0.5	U	μg/L	2.5	0.5
		SW8260	1,2-DCB	95-50-1	Ν	0.53	U	μg/L	5	0.53
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.58	U	μg/L	10	0.58
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.59	U	μg/L	5	0.59
		SW8260	1,2-EDB	106-93-4	N	0.43	U	μg/L	5	0.43
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.42	U	μg/L	5	0.42
		SW8260	1,3-DCB	541-73-1	N	0.51	U	μg/L	5	0.51
		SW8260	1,3-Dichloropropane	142-28-9	N	0.43	U	μg/L	2	0.43
		SW8260	1,4-DCB	106-46-7	Ν	0.67	U	μg/L	2.5	0.67
		SW8260	1-Chlorohexane	544-10-5	N	0.31	U	μg/L	5	0.31
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.58	U	μg/L	5	0.58
		SW8260	2-Chlorotoluene	95-49-8	N	0.41	U	μg/L	5	0.41
		SW8260	4-Chlorotoluene	106-43-4	N	0.37	U	μg/L	5	0.37
		SW8260	Acetone	67-64-1	N	3.2	U	μg/L	50	3.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C001MW	1/17/2005	SW8260	Benzene	71-43-2	N	0.36	U	μg/L	2	0.36
		SW8260	Bromobenzene	108-86-1	N	0.55	U	μg/L	5	0.55
		SW8260	Bromochloromethane	74-97-5	N	0.66	U	μg/L	5	0.66
		SW8260	Bromodichloromethane	75-27-4	N	0.59	U	μg/L	2.5	0.59
		SW8260	Bromoform	75-25-2	N	0.38	U	μg/L	5	0.38
		SW8260	Bromomethane	74-83-9	N	1.14	U	μg/L	15	1.14
		SW8260	Carbon Tetrachloride	56-23-5	N	0.39	U	μg/L	5	0.39
		SW8260	Chlorobenzene	108-90-7	N	0.62	U	μg/L	2.5	0.62
		SW8260	Chloroethane	75-00-3	N	1.01	U	μg/L	5	1.01
		SW8260	Chloroform	67-66-3	N	0.69	F	μg/L	1.5	0.63
		SW8260	Chloromethane	74-87-3	N	0.73	U	μg/L	5	0.73
		SW8260	cis-1,2-DCE	156-59-2	N	301		μg/L	5	0.48
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.51	U	μg/L	2.5	0.51
		SW8260	Dibromochloromethane	124-48-1	N	0.45	U	μg/L	2.5	0.45
		SW8260	Dibromomethane	74-95-3	N	0.57	U	μg/L	5	0.57
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.66	U	μg/L	5	0.66
		SW8260	Ethylbenzene	100-41-4	N	0.39	U	μg/L	5	0.39
		SW8260	Hexachlorobutadiene	87-68-3	N	0.47	U	μg/L	3	0.47
		SW8260	Isopropylbenzene	98-82-8	N	0.39	U	μg/L	5	0.39
		SW8260	m,p-Xylene	108-38-3/1	N	0.68	U	μg/L	10	0.68
		SW8260	MEK (2-Butanone)	78-93-3	N	0.9	U	μg/L	50	0.9
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.75	U	μg/L	25	0.75
		SW8260	Methylene Chloride	75-09-2	N	0.99	U	μg/L	5	0.99
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.7	U	μg/L	50	0.7
		SW8260	Naphthalene	91-20-3	N	0.26	U	μg/L	5	0.26
		SW8260	n-Butylbenzene	104-51-8	N	0.44	U	μg/L	5	0.44
		SW8260	n-Propylbenzene	103-65-1	N	0.38	U	μg/L	5	0.38
		SW8260	o-Xylene	95-47-6	N	0.44	U	μg/L	5	0.44
		SW8260	p-Isopropyltoluene	99-87-6	N	0.45	U	μg/L	5	0.45
		SW8260	sec-Butylbenzene	135-98-8	N	0.37	U	μg/L	5	0.37
		SW8260	Styrene	100-42-5	N	0.41	U	μg/L	5	0.41
		SW8260	TCE	79-01-6	N	993		μg/L	50	4.93
		SW8260	Tert-Butylbenzene	98-06-6	N	0.35	U	μg/L	5	0.35
ND 110 11 N TOMA 11' 110000 A 11									EA OUNENE DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Performance Monitori	ing Well Results								
10C001MW	1/17/2005	SW8260	Tetrachloroethylene	127-18-4	N	74.3		μg/L	5	0.36
		SW8260	Toluene	108-88-3	N	0.39	U	μg/L	5	0.39
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.55	F	μg/L	5	0.47
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.33	U	μg/L	5	0.33
		SW8260	Trichlorofluoromethane	75-69-4	Ν	0.87	U	μg/L	5	0.87
		SW8260	Vinyl Chloride	75-01-4	N	1.04	U	μg/L	5	1.04
		SW9056	Chloride	CHLORIDE	N	22.9		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	Ν	1.52		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.013	UM	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	9.98		mg/L	1	0.008
	3/21/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	Ν	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	Ν	0.034	U	μg/L	0.82	0.034
		RSK-175	Ethene	74-85-1	Ν	0.034	U	μg/L	0.82	0.034
		RSK-175	Methane	74-82-8	Ν	0.23	F	μg/L	0.61	0.02
		SW6010	Iron, dissolved	7439-89-6_D	N	0.008	F	mg/L	0.2	0.004
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0012	F	mg/L	0.01	0.0006
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.29	U	μg/L	2.5	0.29
		SW8260	1,1,1-TCA	71-55-6	Ν	0.39	U	μg/L	5	0.39
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.28	U	μg/L	2.5	0.28
		SW8260	1,1,2-TCA	79-00-5	N	0.36	U	μg/L	5	0.36
		SW8260	1,1-DCA	75-34-3	N	0.3	U	μg/L	5	0.3
		SW8260	1,1-DCE	75-35-4	N	0.37	U	μg/L	5	0.37
		SW8260	1,1-Dichloropropene	563-58-6	N	0.27	U	μg/L	5	0.27
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.44	U	μg/L	5	0.44
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.38	U	μg/L	5	0.38
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.23	U	μg/L	5	0.23
		SW8260	1,2-DCA	107-06-2	N	0.43	U	μg/L	2.5	0.43
		SW8260	1,2-DCB	95-50-1	N	0.3	U	μg/L	5	0.3
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.59	U	μg/L	10	0.59
		SW8260	1,2-Dichloropropane	78-87-5	N	0.2	U	μg/L	5	0.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C001MW	3/21/2005	SW8260	1,2-EDB	106-93-4	N	0.37	U	μg/L	5	0.37
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.3	U	μg/L	5	0.3
		SW8260	1,3-DCB	541-73-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,3-Dichloropropane	142-28-9	N	0.25	U	μg/L	2	0.25
		SW8260	1,4-DCB	106-46-7	Ν	0.34	U	μg/L	2.5	0.34
		SW8260	1-Chlorohexane	544-10-5	N	0.29	U	μg/L	5	0.29
		SW8260	2,2-Dichloropropane	594-20-7	N	0.45	U	μg/L	5	0.45
		SW8260	2-Chlorotoluene	95-49-8	N	0.28	U	μg/L	5	0.28
		SW8260	4-Chlorotoluene	106-43-4	N	0.3	U	μg/L	5	0.3
		SW8260	Acetone	67-64-1	N	2.4	U	μg/L	50	2.4
		SW8260	Benzene	71-43-2	N	0.31	U	μg/L	2	0.31
		SW8260	Bromobenzene	108-86-1	N	0.37	U	μg/L	5	0.37
		SW8260	Bromochloromethane	74-97-5	N	0.46	U	μg/L	5	0.46
		SW8260	Bromodichloromethane	75-27-4	N	0.36	U	μg/L	2.5	0.36
		SW8260	Bromoform	75-25-2	N	0.42	U	μg/L	5	0.42
		SW8260	Bromomethane	74-83-9	N	0.51	U	μg/L	15	0.51
		SW8260	Carbon Tetrachloride	56-23-5	N	0.28	U	μg/L	5	0.28
		SW8260	Chlorobenzene	108-90-7	N	0.35	U	μg/L	2.5	0.35
		SW8260	Chloroethane	75-00-3	N	0.16	U	μg/L	5	0.16
		SW8260	Chloroform	67-66-3	N	0.74	F	μg/L	1.5	0.44
		SW8260	Chloromethane	74-87-3	N	0.2	U	μg/L	5	0.2
		SW8260	cis-1,2-DCE	156-59-2	N	342		μg/L	5	0.29
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.35	U	μg/L	2.5	0.35
		SW8260	Dibromochloromethane	124-48-1	N	0.16	U	μg/L	2.5	0.16
		SW8260	Dibromomethane	74-95-3	N	0.43	U	μg/L	5	0.43
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.27	U	μg/L	5	0.27
		SW8260	Ethylbenzene	100-41-4	N	0.28	U	μg/L	5	0.28
		SW8260	Hexachlorobutadiene	87-68-3	N	0.37	U	μg/L	3	0.37
		SW8260	Isopropylbenzene	98-82-8	N	0.25	U	μg/L	5	0.25
		SW8260	m,p-Xylene	108-38-3/1	N	0.5	U	μg/L	10	0.5
		SW8260	MEK (2-Butanone)	78-93-3	N	1.4	Ū	μg/L	50	1.4
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.29	Ū	μg/L	25	0.29
		SW8260	Methylene Chloride	75-09-2	N	0.33	U	μg/L	5	0.33
ND 11D 11 NTONIA 11 10000 A 1			-						TA OU MENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	– Performance Monitori	ng Well Results								
10C001MW	3/21/2005	SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.9	U	μg/L	50	0.9
		SW8260	Naphthalene	91-20-3	N	0.33	U	μg/L	5	0.33
		SW8260	n-Butylbenzene	104-51-8	Ν	0.3	U	μg/L	5	0.3
		SW8260	n-Propylbenzene	103-65-1	Ν	0.25	U	μg/L	5	0.25
		SW8260	o-Xylene	95-47-6	Ν	0.3	U	μg/L	5	0.3
		SW8260	p-Isopropyltoluene	99-87-6	N	0.21	U	μg/L	5	0.21
		SW8260	sec-Butylbenzene	135-98-8	N	0.28	U	μg/L	5	0.28
		SW8260	Styrene	100-42-5	N	0.25	U	μg/L	5	0.25
		SW8260	TCE	79-01-6	N	1000		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.28	U	μg/L	5	0.28
		SW8260	Tetrachloroethylene	127-18-4	N	91.3		μg/L	5	0.39
		SW8260	Toluene	108-88-3	N	0.28	U	μg/L	5	0.28
		SW8260	trans-1,2-DCE	156-60-5	N	0.36	U	μg/L	5	0.36
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.27	U	μg/L	5	0.27
		SW8260	Trichlorofluoromethane	75-69-4	N	0.32	U	μg/L	5	0.32
		SW8260	Vinyl Chloride	75-01-4	N	0.47	U	μg/L	5	0.47
		SW9030	Sulfide	SULFIDE	N	0.97	U	mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	23.4		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	N	1.27		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.08	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	6.38		mg/L	1	0.008
10C033RW	1/18/2005	SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	- Performance Monitor	ing Well Results								
10C033RW	1/18/2005	SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	Ν	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	1.2	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	14.4		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
NID 1 ID 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									EA OURAENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitori	ng Well Results								
10C033RW	1/18/2005	SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	20.7		μg/L	1	0.1
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	0.32	F	μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
10C040RW		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	Performance Monitor	ing Well Results								
10C040RW	1/18/2005	SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	Ν	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	Ν	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	Ν	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	12.3		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitori	ng Well Results								
10C040RW	1/18/2005	SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	Ν	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	11.9		μg/L	1	0.1
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	0.07	U	μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.09	U	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
10C047MW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.032	U	μg/L	0.77	0.032
		RSK-175	Ethene	74-85-1	N	0.032	U	μg/L	0.78	0.032
		RSK-175	Methane	74-82-8	N	0.21	F	μg/L	0.58	0.018
		SW6010	Iron, dissolved	7439-89-6_D	N	0.008	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0005	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.07	U	μg/L	1	0.07
O.D. I.D. I.I. W.TOMBA I.I. 110000 A									TA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C047MW	1/17/2005	SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	1.5	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	Ν	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	8.57		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limi
Performance Monitori	ng Well Results								
1/17/2005	SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
	SW8260	Ethylbenzene	100-41-4	Ν	0.08	U	μg/L	1	0.08
	SW8260	Hexachlorobutadiene	87-68-3	Ν	0.09	U	μg/L	0.6	0.09
	SW8260	Isopropylbenzene	98-82-8	Ν	0.08	U	μg/L	1	0.08
	SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
	SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
	SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
	SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
	SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
	SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
	SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
	SW8260	n-Propylbenzene	103-65-1	N	0.08	U		1	0.08
	SW8260	o-Xylene	95-47-6	N	0.09	U		1	0.09
	SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U		1	0.09
	SW8260		135-98-8	N	0.07	U		1	0.07
	SW8260	Styrene	100-42-5	N	0.08	U		1	0.08
	SW8260	TCE	79-01-6	N	27			1	0.1
	SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U		1	0.07
		-	127-18-4	N	1.95			1	0.07
	SW8260	Toluene	108-88-3	N	0.08	U		1	0.08
	SW8260	trans-1,2-DCE	156-60-5	N	0.09	U		1	0.09
	SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U		1	0.07
		Trichlorofluoromethane	75-69-4	N	0.17	U		1	0.17
			75-01-4	N	0.21	U		1	0.21
		· ·	CHLORIDE	N				5	0.055
		Nitrate-N	NITRATE	N				1	0.0022
		Phosphate	Phosphate	N	0.013	U	_	1	0.013
		•	•	N	8.81		_	1	0.008
3/21/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U		0.1	0.0077
				N			_		0.011
			79-09-4	N	0.0091	U			0.0091
		•					_		0.036
	RSK-175	Ethene	74-85-1	N	0.048	F	μg/L	0.87	0.036
	Performance Monitori 1/17/2005	Date Method	Date Method Analyte Performance Monitoring Well Results 1/17/2005 SW8260 Dichlorodifluoromethane SW8260 Ethylbenzene SW8260 Hexachlorobutadiene SW8260 Hexachlorobutadiene SW8260 Isopropylbenzene SW8260 MEK (2-Butanone) SW8260 Methyl t-butyl ether (MtBE) SW8260 Methyl t-butyl ether (MtBE) SW8260 Methylene Chloride SW8260 MgK (methyl isobutyl ketone) SW8260 Naphthalene SW8260 n-Butylbenzene SW8260 n-Propylbenzene SW8260 p-Isopropyltoluene SW8260 sec-Butylbenzene SW8260 Styrene SW8260 Tetrablybenzene SW8260 Tetr	Date Method Analyte No. Performance Monitoring Well Results Ferformance Monitoring Well Results 1/17/2005 SW8260 Ethylbenzene 100-41-4 SW8260 Hexachlorobutadiene 87-68-3 SW8260 Hexachlorobutadiene 87-68-3 SW8260 Merpopylbenzene 98-82-8 SW8260 M.P. Xylene 108-38-3/1 SW8260 MEK (2-Butanone) 78-93-3 SW8260 Methyl t-butyl ether (MtBE) 1634-04-4 SW8260 Methylene Chloride 75-09-2 SW8260 Methylene Chloride 75-09-2 SW8260 Naphthalene 91-20-3 SW8260 Naphthalene 91-20-3 SW8260 n-Butylbenzene 103-65-1 SW8260 n-Propylbenzene 103-65-1 SW8260 p-Isopropyltoluene 99-87-6 SW8260 p-Isopropyltoluene 99-87-6 SW8260 Styrene 100-42-6 SW8260 Tert-Butylbenzene 135-98-8 SW8260 <t< td=""><td>Date Method Analyte No. Type Performance Monitoring Well Results 1/17/2005 SW8260 Dichlorodifluoromethane 75-71-8 N SW8260 Ethylbenzene 100-41-4 N SW8260 Hexachlorobutadiene 87-68-3 N SW8260 Mespropylbenzene 98-82-8 N SW8260 m.p-Xylene 108-38-3/1 N SW8260 MEK (2-Butanone) 78-93-3 N SW8260 Methyl t-butyl ether (MtBE) 1634-04-4 N SW8260 Methylene Chloride 75-99-2 N SW8260 MiBK (methyl isobutyl ketone) 108-10-1 N SW8260 Naphthalene 91-20-3 N SW8260 n-Butylbenzene 104-51-8 N SW8260 n-Propylbenzene 104-51-8 N SW8260 p-Isopropyltoluene 95-47-6 N SW8260 p-Isopropyltoluene 99-87-6 N SW8260 Styrene 100-42-5</td><td> Performance Monitoring Well Results</td><td> Performance Monitoring Well Results</td><td> Performance Monitoring Well Results Position Pos</td><td> Performance Monitoring Well Results</td></t<>	Date Method Analyte No. Type Performance Monitoring Well Results 1/17/2005 SW8260 Dichlorodifluoromethane 75-71-8 N SW8260 Ethylbenzene 100-41-4 N SW8260 Hexachlorobutadiene 87-68-3 N SW8260 Mespropylbenzene 98-82-8 N SW8260 m.p-Xylene 108-38-3/1 N SW8260 MEK (2-Butanone) 78-93-3 N SW8260 Methyl t-butyl ether (MtBE) 1634-04-4 N SW8260 Methylene Chloride 75-99-2 N SW8260 MiBK (methyl isobutyl ketone) 108-10-1 N SW8260 Naphthalene 91-20-3 N SW8260 n-Butylbenzene 104-51-8 N SW8260 n-Propylbenzene 104-51-8 N SW8260 p-Isopropyltoluene 95-47-6 N SW8260 p-Isopropyltoluene 99-87-6 N SW8260 Styrene 100-42-5	Performance Monitoring Well Results	Performance Monitoring Well Results	Performance Monitoring Well Results Position Pos	Performance Monitoring Well Results

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C047MW	3/21/2005	RSK-175	Methane	74-82-8	N	0.18	F	μg/L	0.65	0.021
		SW6010	Iron, dissolved	7439-89-6_D	N	0.012	F	mg/L	0.2	0.004
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0006	U	mg/L	0.01	0.0006
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	6.5	F	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	Ν	0.7	F	μg/L	1	0.08
\D\D\									EA OURAENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	Performance Monitor	ing Well Results								
10C047MW	3/21/2005	SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	Ν	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	Ν	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	Ν	0.1	F	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	6.97		μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	Ν	0.25	F	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	Ν	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	Ν	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	Ν	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	Ν	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	Ν	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	Ν	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	Ν	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	Ν	37.4		μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	3.75		μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.87	F	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Performance Monitori	ng Well Results								
10C047MW	3/21/2005	SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
		SW9030	Sulfide	SULFIDE	N	2.2		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	40.6		mg/L	10	0.11
		SW9056	Nitrate-N	NITRATE	N	1.12		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.061	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	8.48		mg/L	1	0.008
10C048MW	1/18/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.21	F	μg/L	0.8	0.033
		RSK-175	Ethene	74-85-1	Ν	0.048	F	μg/L	0.81	0.034
		RSK-175	Methane	74-82-8	Ν	0.44	F	μg/L	0.6	0.019
		SW6010	Iron, dissolved	7439-89-6_D	N	0.021	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.004	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	Ν	0.34	F	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	Ν	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Performance Monitor	ing Well Results								
1/18/2005	SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
	SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
	SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
	SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
	SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
	SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
	SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
	SW8260	Benzene	71-43-2	N	0.11	F	μg/L	0.4	0.07
	SW8260	Bromobenzene	108-86-1	N	0.11	U		1	0.11
	SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
	SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
	SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
	SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
	SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
	SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
	SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
	SW8260	Chloroform	67-66-3	N	1.41		μg/L	0.3	0.13
	SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
	SW8260	cis-1,2-DCE	156-59-2	N	178		μg/L	100	9.51
	SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
	SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
	SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
	SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U		1	0.13
	SW8260	Ethylbenzene	100-41-4	N	0.08	U		1	0.08
	SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U		0.6	0.09
	SW8260	Isopropylbenzene	98-82-8	N	0.08	U		1	0.08
	SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
	SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U		10	0.2
	SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U		5	0.15
	SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
	SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
	SW8260	Naphthalene	91-20-3	N	0.05	U		1	0.05
	SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
	Date Performance Monitor	Date Method Performance Monitoring Well Results 1/18/2005 SW8260 SW8260 SW8260	Date Method Analyte Performance Monitoring Well Results 1,3-Dichloropropane 1/18/2005 SW8260 1,3-Dichloropropane SW8260 1,4-DCB SW8260 2,2-Dichloropropane SW8260 2,2-Dichloropropane SW8260 2-Chlorotoluene SW8260 4-Chlorotoluene SW8260 Acetone SW8260 Brombenzene SW8260 Bromochloromethane SW8260 Bromodichloromethane SW8260 Bromodichloromethane SW8260 Bromomethane SW8260 Chlorobenzene SW8260 Chlorotenzene SW8260 Chloroform SW8260 Chloromethane SW8260 cis-1,2-DCE SW8260 cis-1,3-Dichloropropene SW8260 Dibromochloromethane SW8260 Dichlorodifluoromethane SW8260 Ethylbenzene SW8260 Hexachlorobutadiene SW8260 Isopropylbenzene SW8260 Methyl t-butyl	Date Method Analyte No. Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 SW8260 1,4-DCB 106-46-7 SW8260 1-Chlorohexane 544-10-5 SW8260 2,2-Dichloropropane 594-20-7 SW8260 2-Chlorotoluene 95-49-8 SW8260 4-Chlorotoluene 106-43-4 SW8260 Acetone 67-64-1 SW8260 Benzene 71-43-2 SW8260 Bromobenzene 108-86-1 SW8260 Bromochloromethane 74-97-2 SW8260 Bromoform 75-27-4 SW8260 Bromoform 75-25-2 SW8260 Bromothloromethane 74-83-9 SW8260 Carbon Tetrachloride 56-23-5 SW8260 Chlorobenzene 108-90-7 SW8260 Chlorotethane 75-00-2 SW8260 Chlorotethane 74-87-3 SW8260 Chlorotethane 74-87-3 SW826	Date Method Analyte No. Type Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N SW8260 1,4-DCB 106-46-7 N SW8260 1,2-Dichloropexane 594-20-7 N SW8260 2,2-Dichloropropane 594-20-7 N SW8260 2,2-Dichloropropane 594-20-7 N SW8260 2,2-Dichloropropane 594-20-7 N SW8260 2,2-Dichloropropane 594-20-7 N SW8260 4-Chlorotoluene 95-49-8 N SW8260 Acetone 67-64-1 N SW8260 Beromodelloromethane 71-43-2 N SW8260 Bromobenzene 108-86-1 N SW8260 Bromoform 75-27-4 N SW8260 Bromomethane 74-97-5 N SW8260 Bromomethane 74-83-9 N SW8260 Chlorobenzene 108-90-7 N </td <td>Date Method Analyte No. Type Result Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 SW8260 1,4-DCB 106-46-7 N 0.13 SW8260 1-Chlorohexane 544-10-5 N 0.06 SW8260 2,2-Dichloropropane 594-20-7 N 0.12 SW8260 2-Chlorotoluene 95-49-8 N 0.08 SW8260 4-Chlorotoluene 106-43-4 N 0.07 SW8260 Acetone 67-64-1 N 0.06 SW8260 Benzene 71-43-2 N 0.11 SW8260 Bromodichloromethane 74-97-5 N 0.13 SW8260 Bromodichloromethane 75-27-4 N 0.13 SW8260 Bromodichloromethane 75-25-2 N 0.08 SW8260 Bromodichloromethane 74-83-9 N 0.23 SW8260 Chlorobenzene</td> <td>Date Method Analyte No. Type Result Flag Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U SW8260 1,4-DCB 106-46-7 N 0.01 U SW8260 2,2-Dichloropropane 594-40-7 N 0.06 U SW8260 2,2-Dichloropropane 594-49-8 N 0.08 U SW8260 4-Chlorotolune 95-49-8 N 0.08 U SW8260 A-Chlorotolune 106-43-4 N 0.07 U SW8260 Acetone 67-64-1 N 0.06 U SW8260 Bromobenzene 108-86-1 N 0.11 F SW8260 Bromochioromethane 74-97-5 N 0.13 U SW8260 Bromochioromethane 75-27-4 N 0.12 U SW8260 Bromochioromethane 74-87-3 N 0.02</td> <td>Date Method Analyte No. Type Result Flag Units Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U μg/L SW8260 1,4-DCB 106-46-7 N 0.06 U μg/L SW8260 1,2-Dichloropropane 594-20-7 N 0.02 U μg/L SW8260 2,2-Dichloropropane 594-20-7 N 0.02 U μg/L SW8260 2,2-Chlorotoluene 95-49-8 N 0.08 U μg/L SW8260 A-Chlorotoluene 106-43-4 N 0.07 U μg/L SW8260 Acctone 67-64-1 N 0.01 F μg/L SW8260 Bromobenzene 108-86-1 N 0.11 U μg/L SW8260 Bromochloromethane 74-97-5 N 0.13 U μg/L SW8260 Bromochloromethane <t< td=""><td>Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U µg/L 0.4 SW8260 1,4-DCB 106-46-7 N 0.13 U µg/L 0.5 SW8260 1,2-Dichorobrane 594-20-7 N 0.12 U µg/L 1 SW8260 2,2-Dichloropropane 594-20-7 N 0.02 U µg/L 1 SW8260 2,2-Dichloroptoluene 95-49-8 N 0.08 U µg/L 1 SW8260 A-Chlorotoluene 67-64-1 N 0.06 U µg/L 1 SW8260 Benzene 71-43-2 N 0.01 U µg/L 1 SW8260 Bromochloromethane 75-27-4 N 0.11 U µg/L 1 SW8260 Bromochloromethane 75</td></t<></td>	Date Method Analyte No. Type Result Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 SW8260 1,4-DCB 106-46-7 N 0.13 SW8260 1-Chlorohexane 544-10-5 N 0.06 SW8260 2,2-Dichloropropane 594-20-7 N 0.12 SW8260 2-Chlorotoluene 95-49-8 N 0.08 SW8260 4-Chlorotoluene 106-43-4 N 0.07 SW8260 Acetone 67-64-1 N 0.06 SW8260 Benzene 71-43-2 N 0.11 SW8260 Bromodichloromethane 74-97-5 N 0.13 SW8260 Bromodichloromethane 75-27-4 N 0.13 SW8260 Bromodichloromethane 75-25-2 N 0.08 SW8260 Bromodichloromethane 74-83-9 N 0.23 SW8260 Chlorobenzene	Date Method Analyte No. Type Result Flag Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U SW8260 1,4-DCB 106-46-7 N 0.01 U SW8260 2,2-Dichloropropane 594-40-7 N 0.06 U SW8260 2,2-Dichloropropane 594-49-8 N 0.08 U SW8260 4-Chlorotolune 95-49-8 N 0.08 U SW8260 A-Chlorotolune 106-43-4 N 0.07 U SW8260 Acetone 67-64-1 N 0.06 U SW8260 Bromobenzene 108-86-1 N 0.11 F SW8260 Bromochioromethane 74-97-5 N 0.13 U SW8260 Bromochioromethane 75-27-4 N 0.12 U SW8260 Bromochioromethane 74-87-3 N 0.02	Date Method Analyte No. Type Result Flag Units Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U μg/L SW8260 1,4-DCB 106-46-7 N 0.06 U μg/L SW8260 1,2-Dichloropropane 594-20-7 N 0.02 U μg/L SW8260 2,2-Dichloropropane 594-20-7 N 0.02 U μg/L SW8260 2,2-Chlorotoluene 95-49-8 N 0.08 U μg/L SW8260 A-Chlorotoluene 106-43-4 N 0.07 U μg/L SW8260 Acctone 67-64-1 N 0.01 F μg/L SW8260 Bromobenzene 108-86-1 N 0.11 U μg/L SW8260 Bromochloromethane 74-97-5 N 0.13 U μg/L SW8260 Bromochloromethane <t< td=""><td>Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U µg/L 0.4 SW8260 1,4-DCB 106-46-7 N 0.13 U µg/L 0.5 SW8260 1,2-Dichorobrane 594-20-7 N 0.12 U µg/L 1 SW8260 2,2-Dichloropropane 594-20-7 N 0.02 U µg/L 1 SW8260 2,2-Dichloroptoluene 95-49-8 N 0.08 U µg/L 1 SW8260 A-Chlorotoluene 67-64-1 N 0.06 U µg/L 1 SW8260 Benzene 71-43-2 N 0.01 U µg/L 1 SW8260 Bromochloromethane 75-27-4 N 0.11 U µg/L 1 SW8260 Bromochloromethane 75</td></t<>	Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/18/2005 SW8260 1,3-Dichloropropane 142-28-9 N 0.09 U µg/L 0.4 SW8260 1,4-DCB 106-46-7 N 0.13 U µg/L 0.5 SW8260 1,2-Dichorobrane 594-20-7 N 0.12 U µg/L 1 SW8260 2,2-Dichloropropane 594-20-7 N 0.02 U µg/L 1 SW8260 2,2-Dichloroptoluene 95-49-8 N 0.08 U µg/L 1 SW8260 A-Chlorotoluene 67-64-1 N 0.06 U µg/L 1 SW8260 Benzene 71-43-2 N 0.01 U µg/L 1 SW8260 Bromochloromethane 75-27-4 N 0.11 U µg/L 1 SW8260 Bromochloromethane 75

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitori	ng Well Results								
10C048MW	1/18/2005	SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	Ν	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	Ν	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	Ν	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	Ν	80.0	U	μg/L	1	80.0
		SW8260	TCE	79-01-6	N	1660		μg/L	100	9.85
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	31.1		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	80.0
		SW8260	trans-1,2-DCE	156-60-5	N	0.51	F	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Chloride	CHLORIDE	N	9.15		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	N	1.67		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.013	U	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	7.49		mg/L	1	0.008
	3/22/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.04	U	μg/L	0.96	0.04
		RSK-175	Ethene	74-85-1	N	0.04	U	μg/L	0.96	0.04
		RSK-175	Methane	74-82-8	N	0.2	F	μg/L	0.72	0.023
		SW6010	Iron, dissolved	7439-89-6_D	N	0.006	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C048MW	3/22/2005	SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.47		μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	126		μg/L	50	2.87
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitori	ng Well Results								
10C048MW	3/22/2005	SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	Ν	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	Ν	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	Ν	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	Ν	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	Ν	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	Ν	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	435		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	6.38		μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.32	F	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
		SW9030	Sulfide	SULFIDE	N	2.2		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	8.39		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	N	1.84		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.096	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	7.54		mg/L	1	0.008
10C049MW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	Ü	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	Ü	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.31	F	μg/L	0.77	0.032
O.D. 1.1D.4.1						-			FACULATINE DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10C049MW	1/17/2005	RSK-175	Ethene	74-85-1	N	0.052	F	μg/L	0.78	0.032
		RSK-175	Methane	74-82-8	N	0.57	F	μg/L	0.58	0.018
		SW6010	Iron, dissolved	7439-89-6_D	N	0.006	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0009	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.38	F	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	80.0	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	Ν	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	Ν	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	Ν	80.0	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	Ν	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.09	F	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	Bromodichloromethane	75-27-4	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	80.0	U	μg/L	1	0.08

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
0C049MW	1/17/2005	SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	Ν	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.86		μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	146		μg/L	50	4.76
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	716		μg/L	50	4.93
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	19.9		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.19	F	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
A TOMAN A C. HOOOD A L									EA OURAENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitori	ing Well Results								
10C049MW	1/17/2005	SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Chloride	CHLORIDE	N	27.7		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	Ν	1.19		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.051	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	12.4		mg/L	1	0.008
	3/21/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.085	F	μg/L	0.87	0.036
		RSK-175	Ethene	74-85-1	N	0.036	U	μg/L	0.88	0.036
		RSK-175	Methane	74-82-8	N	0.28	F	μg/L	0.66	0.021
		SW6010	Iron, dissolved	7439-89-6_D	N	0.009	F	mg/L	0.2	0.004
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0006	U	mg/L	0.01	0.0006
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.13	U	μg/L	1.1	0.13
		SW8260	1,1,1-TCA	71-55-6	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.12	U	μg/L	1.1	0.12
		SW8260	1,1,2-TCA	79-00-5	Ν	0.41	F	μg/L	2.2	0.16
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,1-DCE	75-35-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,1-Dichloropropene	563-58-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.2	U	μg/L	2.2	0.2
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.1	U	μg/L	2.2	0.1
		SW8260	1,2-DCA	107-06-2	N	0.19	U	μg/L	1.1	0.19
		SW8260	1,2-DCB	95-50-1	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.26	U	μg/L	4.4	0.26
		SW8260	1,2-Dichloropropane	78-87-5	N	0.09	U	μg/L	2.2	0.09
		SW8260	1,2-EDB	106-93-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,3-DCB	541-73-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,3-Dichloropropane	142-28-9	N	0.11	U	μg/L	0.9	0.11
		SW8260	1,4-DCB	106-46-7	Ν	0.15	U	μg/L	1.1	0.15
\D\D(EA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	Performance Monitor	ing Well Results								
10C049MW	3/21/2005	SW8260	1-Chlorohexane	544-10-5	N	0.13	U	μg/L	2.2	0.13
		SW8260	2,2-Dichloropropane	594-20-7	N	0.2	U	μg/L	2.2	0.2
		SW8260	2-Chlorotoluene	95-49-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	4-Chlorotoluene	106-43-4	N	0.13	U	μg/L	2.2	0.13
		SW8260	Acetone	67-64-1	N	1	U	μg/L	22	1
		SW8260	Benzene	71-43-2	N	0.14	U	μg/L	0.9	0.14
		SW8260	Bromobenzene	108-86-1	N	0.16	U	μg/L	2.2	0.16
		SW8260	Bromochloromethane	74-97-5	N	0.2	U	μg/L	2.2	0.2
		SW8260	Bromodichloromethane	75-27-4	N	0.16	U	μg/L	1.1	0.16
		SW8260	Bromoform	75-25-2	N	0.18	U	μg/L	2.2	0.18
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	6.6	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.12	U	μg/L	2.2	0.12
		SW8260	Chlorobenzene	108-90-7	N	0.15	U	μg/L	1.1	0.15
		SW8260	Chloroethane	75-00-3	N	0.07	U	μg/L	2.2	0.07
		SW8260	Chloroform	67-66-3	N	0.74		μg/L	0.7	0.19
		SW8260	Chloromethane	74-87-3	N	0.09	U	μg/L	2.2	0.09
		SW8260	cis-1,2-DCE	156-59-2	N	155		μg/L	2.2	0.13
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.15	U	μg/L	1.1	0.15
		SW8260	Dibromochloromethane	124-48-1	N	0.07	U	μg/L	1.1	0.07
		SW8260	Dibromomethane	74-95-3	N	0.19	U	μg/L	2.2	0.19
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	Ethylbenzene	100-41-4	N	0.12	U	μg/L	2.2	0.12
		SW8260	Hexachlorobutadiene	87-68-3	N	0.16	U	μg/L	1.3	0.16
		SW8260	Isopropylbenzene	98-82-8	N	0.11	U	μg/L	2.2	0.11
		SW8260	m,p-Xylene	108-38-3/1	N	0.22	U	μg/L	4.4	0.22
		SW8260	MEK (2-Butanone)	78-93-3	N	0.6	U	μg/L	22	0.6
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.13	U	μg/L	11	0.13
		SW8260	Methylene Chloride	75-09-2	N	0.15	U	μg/L	2.2	0.15
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.4	U	μg/L	22	0.4
		SW8260	Naphthalene	91-20-3	N	0.14	U	μg/L	2.2	0.14
		SW8260	n-Butylbenzene	104-51-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	n-Propylbenzene	103-65-1	N	0.11	U	μg/L	2.2	0.11
		SW8260	o-Xylene	95-47-6	N	0.13	U	μg/L	2.2	0.13

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitori	ing Well Results								
10C049MW	3/21/2005	SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	2.2	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	Styrene	100-42-5	N	0.11	U	μg/L	2.2	0.11
		SW8260	TCE	79-01-6	N	603		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	Tetrachloroethylene	127-18-4	Ν	16		μg/L	2.2	0.17
		SW8260	Toluene	108-88-3	N	0.12	U	μg/L	2.2	0.12
		SW8260	trans-1,2-DCE	156-60-5	N	1.46	F	μg/L	2.2	0.16
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	Trichlorofluoromethane	75-69-4	N	0.14	U	μg/L	2.2	0.14
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	2.2	0.21
		SW9030	Sulfide	SULFIDE	N	2.2		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	30		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	N	1.29		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.07	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	11.1		mg/L	1	0.008
10C054RW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.033	U	μg/L	0.79	0.033
		RSK-175	Ethene	74-85-1	N	0.044	F	μg/L	0.8	0.033
		RSK-175	Methane	74-82-8	N	0.27	F	μg/L	0.6	0.019
		SW6010	Iron, dissolved	7439-89-6_D	N	0.009	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0022	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
0.10 1.10 1.1 1.1 1.00000 4									TA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
0C054RW	1/17/2005	SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	80.0	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	1.6	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	Ν	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.75		μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	5.93		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	Ν	0.13	U	μg/L	1	0.13
VID 1 10 11 11 TOMA 11: 110000 A 11									TA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limi
Performance Monitori	ng Well Results								
1/17/2005	SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
	SW8260	Hexachlorobutadiene	87-68-3	Ν	0.09	U	μg/L	0.6	0.09
	SW8260	Isopropylbenzene	98-82-8	Ν	0.08	U	μg/L	1	0.08
	SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
	SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
	SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
	SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
	SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
	SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
	SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
	SW8260	n-Propylbenzene	103-65-1	N	0.08	U		1	0.08
	SW8260		95-47-6	N	0.09	U		1	0.09
	SW8260	•	99-87-6	N	0.09	U		1	0.09
	SW8260		135-98-8	N	0.07	U		1	0.07
	SW8260	•	100-42-5	N	0.08	U		1	0.08
	SW8260	TCE	79-01-6	N	696			50	4.93
		Tert-Butylbenzene		N	0.07	U		1	0.07
		•		N				1	0.07
		Toluene		N		U		1	0.08
		trans-1.2-DCE	156-60-5	N	0.09	U		1	0.09
		•		N	0.07			1	0.07
		Trichlorofluoromethane		N	0.17				0.17
		Vinvl Chloride		N	0.21				0.21
		-							0.011
				N			_		0.0022
						U			0.013
		•	•				_		0.008
3/22/2005						U	_		0.0077
0/11/1000									0.011
							_		0.0091
		·							0.036
									0.036
									0.030
	Performance Monitori	### Performance Monitoring Well Results 1/17/2005	Trick Tric	Performance Monitoring Well Results	Performance Monitoring Well Results	Performance Monitoring Well Results	1/17/2005 SW8260 Ethylbenzene 100-41-4 N 0.08 U	1/17/2005 SW8260 Ethylbenzene 100-41-4 N 0.08 U μg/L	Performance Monitoring Well Results

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
ite 10 EISB Treatment System -	Performance Monitori	ng Well Results								
0C054RW	3/22/2005	SW6010	Iron, dissolved	7439-89-6_D	N	0.007	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.001	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.13	U	μg/L	1.1	0.13
		SW8260	1,1,1-TCA	71-55-6	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.12	U	μg/L	1.1	0.12
		SW8260	1,1,2-TCA	79-00-5	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,1-DCE	75-35-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,1-Dichloropropene	563-58-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.2	U	μg/L	2.2	0.2
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.17	U	μg/L	2.2	0.17
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.1	U	μg/L	2.2	0.1
		SW8260	1,2-DCA	107-06-2	N	0.19	U	μg/L	1.1	0.19
		SW8260	1,2-DCB	95-50-1	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.26	U	μg/L	4.4	0.26
		SW8260	1,2-Dichloropropane	78-87-5	N	0.09	U	μg/L	2.2	0.09
		SW8260	1,2-EDB	106-93-4	N	0.16	U	μg/L	2.2	0.16
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	1,3-DCB	541-73-1	N	0.14	U	μg/L	2.2	0.14
		SW8260	1,3-Dichloropropane	142-28-9	N	0.11	U	μg/L	0.9	0.11
		SW8260	1,4-DCB	106-46-7	N	0.15	U	μg/L	1.1	0.15
		SW8260	1-Chlorohexane	544-10-5	N	0.13	U	μg/L	2.2	0.13
		SW8260	2,2-Dichloropropane	594-20-7	N	0.2	U	μg/L	2.2	0.2
		SW8260	2-Chlorotoluene	95-49-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	4-Chlorotoluene	106-43-4	N	0.13	U	μg/L	2.2	0.13
		SW8260	Acetone	67-64-1	N	1	U	μg/L	22	1
		SW8260	Benzene	71-43-2	N	0.14	U	μg/L	0.9	0.14
		SW8260	Bromobenzene	108-86-1	N	0.16	U	μg/L	2.2	0.16
		SW8260	Bromochloromethane	74-97-5	N	0.2	U	μg/L	2.2	0.2
		SW8260	Bromodichloromethane	75-27-4	N	0.16	U	μg/L	1.1	0.16
		SW8260	Bromoform	75-25-2	N	0.18	U	μg/L	2.2	0.18
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	6.6	0.23

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	Performance Monitor	ing Well Results								
10C054RW	3/22/2005	SW8260	Carbon Tetrachloride	56-23-5	N	0.12	U	μg/L	2.2	0.12
		SW8260	Chlorobenzene	108-90-7	N	0.15	U	μg/L	1.1	0.15
		SW8260	Chloroethane	75-00-3	N	0.07	U	μg/L	2.2	0.07
		SW8260	Chloroform	67-66-3	N	0.72		μg/L	0.7	0.19
		SW8260	Chloromethane	74-87-3	N	0.09	U	μg/L	2.2	0.09
		SW8260	cis-1,2-DCE	156-59-2	N	6.06		μg/L	2.2	0.13
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.15	U	μg/L	1.1	0.15
		SW8260	Dibromochloromethane	124-48-1	N	0.07	U	μg/L	1.1	0.07
		SW8260	Dibromomethane	74-95-3	N	0.19	U	μg/L	2.2	0.19
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	Ethylbenzene	100-41-4	N	0.12	U	μg/L	2.2	0.12
		SW8260	Hexachlorobutadiene	87-68-3	N	0.16	U	μg/L	1.3	0.16
		SW8260	Isopropylbenzene	98-82-8	N	0.11	U	μg/L	2.2	0.11
		SW8260	m,p-Xylene	108-38-3/1	N	0.22	U	μg/L	4.4	0.22
		SW8260	MEK (2-Butanone)	78-93-3	N	0.6	U	μg/L	22	0.6
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.13	U	μg/L	11	0.13
		SW8260	Methylene Chloride	75-09-2	N	0.15	U	μg/L	2.2	0.15
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.4	U	μg/L	22	0.4
		SW8260	Naphthalene	91-20-3	N	0.14	U	μg/L	2.2	0.14
		SW8260	n-Butylbenzene	104-51-8	N	0.13	U	μg/L	2.2	0.13
		SW8260	n-Propylbenzene	103-65-1	Ν	0.11	U	μg/L	2.2	0.11
		SW8260	o-Xylene	95-47-6	N	0.13	U	μg/L	2.2	0.13
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	2.2	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.12	U	μg/L	2.2	0.12
		SW8260	Styrene	100-42-5	N	0.11	U	μg/L	2.2	0.11
		SW8260	TCE	79-01-6	N	611		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.12	U	μg/L	2.2	0.12
		SW8260	Tetrachloroethylene	127-18-4	N	92		μg/L	2.2	0.17
		SW8260	Toluene	108-88-3	Ν	0.12	U	μg/L	2.2	0.12
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.16	U	μg/L	2.2	0.16
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.12	U	μg/L	2.2	0.12
		SW8260	Trichlorofluoromethane	75-69-4	Ν	0.14	U	μg/L	2.2	0.14
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	2.2	0.21

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitor	ing Well Results								
10C054RW	3/22/2005	SW9030	Sulfide	SULFIDE	N	5		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	9.55		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	Ν	1.81		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.15	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	3.72		mg/L	1	0.008
10C055RW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		SW6010	Iron, dissolved	7439-89-6_D	N	0.005	U	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0273		mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.58		μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	1.29		μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.17	F	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	80.0	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Performance Monitor	ing Well Results								
1/17/2005	SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
	SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
	SW8260	Acetone	67-64-1	N	1.4	F	μg/L	10	0.6
	SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
	SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
	SW8260	Bromochloromethane	74-97-5	Ν	0.13	U	μg/L	1	0.13
	SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
	SW8260	Bromoform	75-25-2	Ν	0.08	U	μg/L	1	0.08
	SW8260	Bromomethane	74-83-9	Ν	0.23	U	μg/L	3	0.23
	SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
	SW8260	Chlorobenzene	108-90-7	Ν	0.12	U	μg/L	0.5	0.12
	SW8260	Chloroethane	75-00-3	N	0.2	U		1	0.2
	SW8260	Chloroform	67-66-3	N	1.06			0.3	0.13
	SW8260	Chloromethane	74-87-3	N	0.15	U		1	0.15
	SW8260	cis-1,2-DCE	156-59-2	N	88.5	F		100	9.51
	SW8260	cis-1,3-Dichloropropene	10061-01-5	Ν	0.1	U		0.5	0.1
	SW8260	Dibromochloromethane	124-48-1	N	0.09	U		0.5	0.09
	SW8260	Dibromomethane	74-95-3	Ν	0.11	U		1	0.11
		Dichlorodifluoromethane	75-71-8	N	0.13	U		1	0.13
	SW8260	Ethylbenzene	100-41-4	N	0.08	U		1	0.08
	SW8260	Hexachlorobutadiene		N	0.09			0.6	0.09
		Isopropylbenzene		N	0.08				0.08
				N	0.14				0.14
				N					0.2
				N	0.15				0.15
				N	0.2				0.2
		•	108-10-1	N	0.1				0.1
		, , ,							0.05
	SW8260	•	104-51-8	N	0.09				0.09
		,		N					0.08
									0.09
		•							0.09
	SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
	Date Performance Monitor	Date Method Performance Monitoring Well Results 1/17/2005 SW8260 SW8260 SW8260	Date Method Analyte Performance Monitoring Well Results 2-Chlorotoluene 1/17/2005 SW8260 2-Chlorotoluene SW8260 4-Chlorotoluene SW8260 Benzene SW8260 Bromobenzene SW8260 Bromochloromethane SW8260 Bromoform SW8260 Bromomethane SW8260 Bromomethane SW8260 Carbon Tetrachloride SW8260 Chlorobenzene SW8260 Chlorotenne SW8260 Chlorotenne SW8260 Chloroform SW8260 Chloromethane SW8260 Cis-1,2-DCE SW8260 Dibromochloromethane SW8260 Dibromochloromethane SW8260 Dichlorodifluoromethane SW8260 Dichlorodifluoromethane SW8260 Bromochloromethane SW8260 Dichlorodifluoromethane SW8260 Bromochloromethane SW8260 Bromochloromethane SW8260 Bromochloromethane <td>Date Method Analyte No. Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 SW8260 4-Chlorotoluene 106-43-4 SW8260 Acetone 67-64-1 SW8260 Benzene 71-43-2 SW8260 Bromobenzene 108-86-1 SW8260 Bromochloromethane 74-97-5 SW8260 Bromodichloromethane 75-27-4 SW8260 Bromoform 75-22-2 SW8260 Bromomethane 74-83-9 SW8260 Carbon Tetrachloride 56-23-2 SW8260 Chlorobenzene 108-90-7 SW8260 Chloroform 67-66-3 SW8260 Chloroform 67-66-3 SW8260 Chloromethane 74-87-3 SW8260 Chloromethane 74-87-3 SW8260 Dibromochloromethane 10061-01-5 SW8260 Dibromochloromethane 75-71-8 SW8260 Dichlorodifluoromethane 75-71-8</td> <td>Date Method Analyte No. Type Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N SW8260 4-Chlorotoluene 106-43-4 N SW8260 Acetone 67-64-1 N SW8260 Benzene 71-43-2 N SW8260 Bromobenzene 108-86-1 N SW8260 Bromochloromethane 74-97-5 N SW8260 Bromoform 75-27-4 N SW8260 Bromomethane 74-83-9 N SW8260 Bromomethane 74-83-9 N SW8260 Carbon Tetrachloride 56-23-5 N SW8260 Chlorobenzene 108-90-7 N SW8260 Chloroform 67-66-3 N SW8260 Chloroform 67-66-3 N SW8260 Chloromethane 74-87-3 N SW8260 Chloromethane 74-87-3 N SW8260</td> <td>Date Method Analyte No. Type Result Performance Wonitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.07 SW8260 4-Chlorotoluene 106-43-4 N 0.07 SW8260 Acctone 67-64-1 N 1.14 SW8260 Bromochlorometane 71-43-2 N 0.07 SW8260 Bromochloromethane 74-97-5 N 0.13 SW8260 Bromochloromethane 74-97-5 N 0.13 SW8260 Bromochloromethane 75-27-2 N 0.08 SW8260 Bromochloromethane 74-83-9 N 0.23 SW8260 Bromochloromethane 74-83-9 N 0.23 SW8260 Carbon Tetrachloride 56-23-5 N 0.08 SW8260 Chlorotehzene 106-90-7 N 0.12 SW8260 Chlorotehzene 75-00-3 N 1.05 SW8260 Chlorotehzene<!--</td--><td>Date Method Analyte No. Type Result Flag Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U SW8260 4-Chlorotoluene 106-43-4 N 0.07 U SW8260 Acetone 67-64-1 N 1.4 F SW8260 Benzene 71-43-2 N 0.07 U SW8260 Bromochloromethane 74-97-5 N 0.13 U SW8260 Bromochloromethane 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.08 U SW8260 Bromore Tetrachloride 56-23-5 N 0.08 U SW8260 Chlorobenzene 108-90-7 N 0.12 U SW8260 Chlorochtane 75-00-3 N 0.02 U</td><td>Date Method Analyte No. Type Result Flag Units Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U μg/L SW8260 4-Chlorotoluene 106-43-4 N 0.07 U μg/L SW8260 Acetone 67-64-1 N 1.14 F μg/L SW8260 Bernee 71-43-2 N 0.07 U μg/L SW8260 Bromochioromethane 74-97-5 N 0.13 U μg/L SW8260 Bromochioromethane 75-27-4 N 0.12 U μg/L SW8260 Bromoform 75-25-2 N 0.08 U μg/L SW8260 Bromothethane 74-83-9 N 0.23 U μg/L SW8260 Carbon Tetrachloride 56-23-5 N 0.08 U μg/L SW8260 Chlorobenzene 108-90-7</td><td>Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U µg/L 1 SW8260 Acetone 67-64-1 N 0.07 U µg/L 1 SW8260 Acetone 67-64-1 N 1.04 F µg/L 1 SW8260 Beromothersene 108-86-1 N 0.07 U µg/L 1 SW8260 Bromothersene 108-86-1 N 0.11 U µg/L 1 SW8260 Bromodichloromethane 74-97-5 N 0.13 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.12 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.08 U µg/L 1 SW8260 Bromoden 74-83-9 N 0.0</td></td>	Date Method Analyte No. Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 SW8260 4-Chlorotoluene 106-43-4 SW8260 Acetone 67-64-1 SW8260 Benzene 71-43-2 SW8260 Bromobenzene 108-86-1 SW8260 Bromochloromethane 74-97-5 SW8260 Bromodichloromethane 75-27-4 SW8260 Bromoform 75-22-2 SW8260 Bromomethane 74-83-9 SW8260 Carbon Tetrachloride 56-23-2 SW8260 Chlorobenzene 108-90-7 SW8260 Chloroform 67-66-3 SW8260 Chloroform 67-66-3 SW8260 Chloromethane 74-87-3 SW8260 Chloromethane 74-87-3 SW8260 Dibromochloromethane 10061-01-5 SW8260 Dibromochloromethane 75-71-8 SW8260 Dichlorodifluoromethane 75-71-8	Date Method Analyte No. Type Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N SW8260 4-Chlorotoluene 106-43-4 N SW8260 Acetone 67-64-1 N SW8260 Benzene 71-43-2 N SW8260 Bromobenzene 108-86-1 N SW8260 Bromochloromethane 74-97-5 N SW8260 Bromoform 75-27-4 N SW8260 Bromomethane 74-83-9 N SW8260 Bromomethane 74-83-9 N SW8260 Carbon Tetrachloride 56-23-5 N SW8260 Chlorobenzene 108-90-7 N SW8260 Chloroform 67-66-3 N SW8260 Chloroform 67-66-3 N SW8260 Chloromethane 74-87-3 N SW8260 Chloromethane 74-87-3 N SW8260	Date Method Analyte No. Type Result Performance Wonitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.07 SW8260 4-Chlorotoluene 106-43-4 N 0.07 SW8260 Acctone 67-64-1 N 1.14 SW8260 Bromochlorometane 71-43-2 N 0.07 SW8260 Bromochloromethane 74-97-5 N 0.13 SW8260 Bromochloromethane 74-97-5 N 0.13 SW8260 Bromochloromethane 75-27-2 N 0.08 SW8260 Bromochloromethane 74-83-9 N 0.23 SW8260 Bromochloromethane 74-83-9 N 0.23 SW8260 Carbon Tetrachloride 56-23-5 N 0.08 SW8260 Chlorotehzene 106-90-7 N 0.12 SW8260 Chlorotehzene 75-00-3 N 1.05 SW8260 Chlorotehzene </td <td>Date Method Analyte No. Type Result Flag Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U SW8260 4-Chlorotoluene 106-43-4 N 0.07 U SW8260 Acetone 67-64-1 N 1.4 F SW8260 Benzene 71-43-2 N 0.07 U SW8260 Bromochloromethane 74-97-5 N 0.13 U SW8260 Bromochloromethane 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.08 U SW8260 Bromore Tetrachloride 56-23-5 N 0.08 U SW8260 Chlorobenzene 108-90-7 N 0.12 U SW8260 Chlorochtane 75-00-3 N 0.02 U</td> <td>Date Method Analyte No. Type Result Flag Units Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U μg/L SW8260 4-Chlorotoluene 106-43-4 N 0.07 U μg/L SW8260 Acetone 67-64-1 N 1.14 F μg/L SW8260 Bernee 71-43-2 N 0.07 U μg/L SW8260 Bromochioromethane 74-97-5 N 0.13 U μg/L SW8260 Bromochioromethane 75-27-4 N 0.12 U μg/L SW8260 Bromoform 75-25-2 N 0.08 U μg/L SW8260 Bromothethane 74-83-9 N 0.23 U μg/L SW8260 Carbon Tetrachloride 56-23-5 N 0.08 U μg/L SW8260 Chlorobenzene 108-90-7</td> <td>Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U µg/L 1 SW8260 Acetone 67-64-1 N 0.07 U µg/L 1 SW8260 Acetone 67-64-1 N 1.04 F µg/L 1 SW8260 Beromothersene 108-86-1 N 0.07 U µg/L 1 SW8260 Bromothersene 108-86-1 N 0.11 U µg/L 1 SW8260 Bromodichloromethane 74-97-5 N 0.13 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.12 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.08 U µg/L 1 SW8260 Bromoden 74-83-9 N 0.0</td>	Date Method Analyte No. Type Result Flag Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U SW8260 4-Chlorotoluene 106-43-4 N 0.07 U SW8260 Acetone 67-64-1 N 1.4 F SW8260 Benzene 71-43-2 N 0.07 U SW8260 Bromochloromethane 74-97-5 N 0.13 U SW8260 Bromochloromethane 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.12 U SW8260 Bromoform 75-27-4 N 0.08 U SW8260 Bromore Tetrachloride 56-23-5 N 0.08 U SW8260 Chlorobenzene 108-90-7 N 0.12 U SW8260 Chlorochtane 75-00-3 N 0.02 U	Date Method Analyte No. Type Result Flag Units Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U μg/L SW8260 4-Chlorotoluene 106-43-4 N 0.07 U μg/L SW8260 Acetone 67-64-1 N 1.14 F μg/L SW8260 Bernee 71-43-2 N 0.07 U μg/L SW8260 Bromochioromethane 74-97-5 N 0.13 U μg/L SW8260 Bromochioromethane 75-27-4 N 0.12 U μg/L SW8260 Bromoform 75-25-2 N 0.08 U μg/L SW8260 Bromothethane 74-83-9 N 0.23 U μg/L SW8260 Carbon Tetrachloride 56-23-5 N 0.08 U μg/L SW8260 Chlorobenzene 108-90-7	Date Method Analyte No. Type Result Flag Units Limit Performance Monitoring Well Results 1/17/2005 SW8260 2-Chlorotoluene 95-49-8 N 0.08 U µg/L 1 SW8260 Acetone 67-64-1 N 0.07 U µg/L 1 SW8260 Acetone 67-64-1 N 1.04 F µg/L 1 SW8260 Beromothersene 108-86-1 N 0.07 U µg/L 1 SW8260 Bromothersene 108-86-1 N 0.11 U µg/L 1 SW8260 Bromodichloromethane 74-97-5 N 0.13 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.12 U µg/L 1 SW8260 Bromoden 75-27-4 N 0.08 U µg/L 1 SW8260 Bromoden 74-83-9 N 0.0

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Performance Monitori	ng Well Results								
10C055RW	1/17/2005	SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	1740		μg/L	100	9.85
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	147		μg/L	100	7.23
		SW8260	Toluene	108-88-3	N	80.0	U	μg/L	1	80.0
		SW8260	trans-1,2-DCE	156-60-5	N	0.15	F	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Chloride	CHLORIDE	N	25.7		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	N	1.84		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.013	U	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	7.62		mg/L	1	800.0
	1/18/2005	RSK-175	Ethane	74-84-0	N	0.82		μg/L	0.82	0.034
		RSK-175	Ethene	74-85-1	N	0.069	F	μg/L	0.83	0.034
		RSK-175	Methane	74-82-8	N	1.51		μg/L	0.62	0.02
	3/22/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.3	F	μg/L	0.93	0.038
		RSK-175	Ethene	74-85-1	N	0.044	F	μg/L	0.93	0.038
		RSK-175	Methane	74-82-8	N	0.44	F	μg/L	0.7	0.022
		SW6010	Iron, dissolved	7439-89-6_D	N	0.024	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0239		mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.29	U	μg/L	2.5	0.29
		SW8260	1,1,1-TCA	71-55-6	N	0.39	U	μg/L	5	0.39
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.28	U	μg/L	2.5	0.28
		SW8260	1,1,2-TCA	79-00-5	N	0.99	F	μg/L	5	0.36
		SW8260	1,1-DCA	75-34-3	Ν	0.3	U	μg/L	5	0.3
		SW8260	1,1-DCE	75-35-4	Ν	0.37	U	μg/L	5	0.37
		SW8260	1,1-Dichloropropene	563-58-6	Ν	0.27	U	μg/L	5	0.27
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.44	U	μg/L	5	0.44
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.38	U	μg/L	5	0.38

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System –	Performance Monitor	ing Well Results								
0C055RW	3/22/2005	SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.23	U	μg/L	5	0.23
		SW8260	1,2-DCA	107-06-2	Ν	0.43	U	μg/L	2.5	0.43
		SW8260	1,2-DCB	95-50-1	Ν	0.3	U	μg/L	5	0.3
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.59	U	μg/L	10	0.59
		SW8260	1,2-Dichloropropane	78-87-5	N	0.2	U	μg/L	5	0.2
		SW8260	1,2-EDB	106-93-4	N	0.37	U	μg/L	5	0.37
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.3	U	μg/L	5	0.3
		SW8260	1,3-DCB	541-73-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,3-Dichloropropane	142-28-9	Ν	0.25	U	μg/L	2	0.25
		SW8260	1,4-DCB	106-46-7	N	0.34	U	μg/L	2.5	0.34
		SW8260	1-Chlorohexane	544-10-5	N	0.29	U	μg/L	5	0.29
		SW8260	2,2-Dichloropropane	594-20-7	N	0.45	U	μg/L	5	0.45
		SW8260	2-Chlorotoluene	95-49-8	N	0.28	U	μg/L	5	0.28
		SW8260	4-Chlorotoluene	106-43-4	N	0.3	U	μg/L	5	0.3
		SW8260	Acetone	67-64-1	N	2.4	U	μg/L	50	2.4
		SW8260	Benzene	71-43-2	N	0.31	U	μg/L	2	0.31
		SW8260	Bromobenzene	108-86-1	N	0.37	U	μg/L	5	0.37
		SW8260	Bromochloromethane	74-97-5	N	0.46	U	μg/L	5	0.46
		SW8260	Bromodichloromethane	75-27-4	N	0.36	U	μg/L	2.5	0.36
		SW8260	Bromoform	75-25-2	N	0.42	U	μg/L	5	0.42
		SW8260	Bromomethane	74-83-9	N	0.51	U	μg/L	15	0.51
		SW8260	Carbon Tetrachloride	56-23-5	N	0.28	U	μg/L	5	0.28
		SW8260	Chlorobenzene	108-90-7	N	0.35	U	μg/L	2.5	0.35
		SW8260	Chloroethane	75-00-3	N	0.16	U	μg/L	5	0.16
		SW8260	Chloroform	67-66-3	N	1.16	F	μg/L	1.5	0.44
		SW8260	Chloromethane	74-87-3	N	0.2	U	μg/L	5	0.2
		SW8260	cis-1,2-DCE	156-59-2	N	102		μg/L	5	0.29
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.35	U	μg/L	2.5	0.35
		SW8260	Dibromochloromethane	124-48-1	N	0.16	Ü	μg/L	2.5	0.16
		SW8260	Dibromomethane	74-95-3	N	0.43	Ü	μg/L	5	0.43
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.27	Ü	μg/L	5	0.27
		SW8260	Ethylbenzene	100-41-4	N	0.28	Ü	μg/L	5	0.28
AND LIND LL MITOMAN LE HOOCO A LE			•						TA OLIMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitori	ing Well Results								
10C055RW	3/22/2005	SW8260	Hexachlorobutadiene	87-68-3	N	0.37	U	μg/L	3	0.37
		SW8260	Isopropylbenzene	98-82-8	Ν	0.25	U	μg/L	5	0.25
		SW8260	m,p-Xylene	108-38-3/1	N	0.5	U	μg/L	10	0.5
		SW8260	MEK (2-Butanone)	78-93-3	Ν	1.4	U	μg/L	50	1.4
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.29	U	μg/L	25	0.29
		SW8260	Methylene Chloride	75-09-2	Ν	0.33	U	μg/L	5	0.33
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.9	U	μg/L	50	0.9
		SW8260	Naphthalene	91-20-3	Ν	0.33	U	μg/L	5	0.33
		SW8260	n-Butylbenzene	104-51-8	Ν	0.3	U	μg/L	5	0.3
		SW8260	n-Propylbenzene	103-65-1	Ν	0.25	U	μg/L	5	0.25
		SW8260	o-Xylene	95-47-6	N	0.3	U	μg/L	5	0.3
		SW8260	p-Isopropyltoluene	99-87-6	N	0.21	U	μg/L	5	0.21
		SW8260	sec-Butylbenzene	135-98-8	N	0.28	U	μg/L	5	0.28
		SW8260	Styrene	100-42-5	N	0.25	U	μg/L	5	0.25
		SW8260	TCE	79-01-6	N	1570		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.28	U	μg/L	5	0.28
		SW8260	Tetrachloroethylene	127-18-4	Ν	165		μg/L	5	0.39
		SW8260	Toluene	108-88-3	N	0.28	U	μg/L	5	0.28
		SW8260	trans-1,2-DCE	156-60-5	N	0.36	U	μg/L	5	0.36
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.27	U	μg/L	5	0.27
		SW8260	Trichlorofluoromethane	75-69-4	N	0.32	U	μg/L	5	0.32
		SW8260	Vinyl Chloride	75-01-4	N	0.47	U	μg/L	5	0.47
		SW9030	Sulfide	SULFIDE	N	4.2		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	23.4		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	N	1.88		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.05	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	6.98		mg/L	1	0.008
10M004MW	1/17/2005	E300.0M	Acetic Acid	64-19-7	N	34		mg/L	0.5	0.11
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	9.06		mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	32.7		μg/L	6.33	0.26
		RSK-175	Ethene	74-85-1	N	50.6		μg/L	5.97	0.25

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M004MW	1/17/2005	RSK-175	Methane	74-82-8	N	5900		μg/L	4.81	0.15
		SW6010	Iron, dissolved	7439-89-6_D	N	2.64		mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	13		mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.15	F	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	Ū	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	Ν	0.13	F	μg/L	1	0.08
NID LID II. NITONIA LE NOCCO A L									TA OLUMENT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M004MW	1/17/2005	SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.13	U	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	181		μg/L	50	4.76
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.19	F	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	34.3		μg/L	1	0.1
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	0.4	F	μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	Ν	1.04		μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limi
Site 10 EISB Treatment System -	- Performance Monitor	ng Well Results								
10M004MW	1/17/2005	SW8260	Vinyl Chloride	75-01-4	N	54		μg/L	1	0.21
		SW9056	Chloride	CHLORIDE	N	20.2		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	N	0.0022	U	mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.013	U	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	0.24	F	mg/L	1	0.008
	3/21/2005	E300.0M	Acetic Acid	64-19-7	N	46.2		mg/L	1	0.077
		E300.0M	Lactic Acid	50-21-5	N	1.53		mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	51.3		mg/L	1	0.091
		RSK-175	Ethane	74-84-0	N	47.2		μg/L	9.67	0.4
		RSK-175	Ethene	74-85-1	N	27		μg/L	9.08	0.38
		RSK-175	Methane	74-82-8	N	16700		μg/L	7.36	0.24
		SW6010	Iron, dissolved	7439-89-6_D	N	3.14		mg/L	0.2	0.004
		SW6010	Manganese, dissolved	7439-96-5_D	N	8.31		mg/L	0.01	0.0006
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M004MW	3/21/2005	SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	Ν	23.4		μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.07	F	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	Ν	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	Ν	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	Ν	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	Ν	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	Ν	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	Ν	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	Ν	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	Ν	0.09	U	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	0.5	F	μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	41.2		μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	Ν	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	n – Performance Monitori	ng Well Results								
10M004MW	3/21/2005	SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	Ν	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	Ν	0.1	F	μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	Ν	0.21	F	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.16	F	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	2.24		μg/L	1	0.09
		SW9030	Sulfide	SULFIDE	N	3		mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	20		mg/L	5	0.055
		SW9056	Nitrate-N	NITRATE	Ν	0.0022	U	mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.013	U	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	0.035	F	mg/L	1	800.0
10M006MW	1/18/2005	E300.0M	Acetic Acid	64-19-7	FD	0.021	U	mg/L	0.1	0.021
		E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	Ν	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Lactic Acid	50-21-5	FD	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	Ν	0.01	U	mg/L	0.1	0.01
		E300.0M	Propionic Acid	79-09-4	FD	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	FD	0.033	U	μg/L	0.78	0.033
		RSK-175	Ethane	74-84-0	Ν	0.03	U	μg/L	0.74	0.03
		RSK-175	Ethene	74-85-1	FD	0.033	U	μg/L	0.79	0.033
		RSK-175	Ethene	74-85-1	Ν	0.031	U	μg/L	0.75	0.031
		RSK-175	Methane	74-82-8	FD	0.24	F	μg/L	0.59	0.019
		RSK-175	Methane	74-82-8	Ν	0.21	F	μg/L	0.55	0.018
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW6010	Manganese, dissolved	7439-96-5_D	FD	0.0011	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	FD	0.09	U	μg/L	0.5	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M006MW	1/18/2005	SW8260	1,1,1-TCA	71-55-6	FD	0.11	U	μg/L	1	0.11
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	FD	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	FD	0.14	U	μg/L	1	0.14
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	FD	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	FD	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	FD	0.11	U	μg/L	1	0.11
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	FD	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,4-Trimethylbenzene	95-63-6	FD	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	FD	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCA	107-06-2	Ν	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	FD	0.11	U	μg/L	1	0.11
		SW8260	1,2-DCB	95-50-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	FD	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.12	U	μg/L	1	0.12
		SW8260	1,2-Dichloropropane	78-87-5	FD	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	FD	0.09	U	μg/L	1	0.09
		SW8260	1,2-EDB	106-93-4	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,3,5-Trimethylbenzene	108-67-8	FD	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	FD	0.1	U	μg/L	1	0.1

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ng Well Results								
10M006MW	1/18/2005	SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	FD	0.09	U	μg/L	0.4	0.09
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	FD	0.13	U	μg/L	0.5	0.13
		SW8260	1,4-DCB	106-46-7	Ν	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	FD	0.06	U	μg/L	1	0.06
		SW8260	1-Chlorohexane	544-10-5	Ν	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.12	U	μg/L	1	0.12
		SW8260	2,2-Dichloropropane	594-20-7	FD	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	FD	0.08	U	μg/L	1	0.08
		SW8260	2-Chlorotoluene	95-49-8	Ν	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	FD	0.07	U	μg/L	1	0.07
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	Ν	0.6	U	μg/L	10	0.6
		SW8260	Acetone	67-64-1	FD	2.3	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Benzene	71-43-2	FD	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	Ν	0.11	U	μg/L	1	0.11
		SW8260	Bromobenzene	108-86-1	FD	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromochloromethane	74-97-5	FD	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	FD	0.12	U	μg/L	0.5	0.12
		SW8260	Bromodichloromethane	75-27-4	Ν	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	Ν	1.5	F	μg/L	10	0.76
		SW8260	Bromoform	75-25-2	FD	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	FD	0.23	U	μg/L	3	0.23
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Carbon Tetrachloride	56-23-5	FD	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	FD	0.12	U	μg/L	0.5	0.12
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroethane	75-00-3	FD	0.2	U	μg/L	1	0.2

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Lim
site 10 EISB Treatment System –	Performance Monitor	ing Well Results	·							
0M006MW	1/18/2005	SW8260	Chloroform	67-66-3	N	0.19	F	μg/L	0.3	0.13
		SW8260	Chloroform	67-66-3	FD	0.2	F	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	FD	0.15	U	μg/L	1	0.15
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	FD	32.6		μg/L	1	0.1
		SW8260	cis-1,2-DCE	156-59-2	N	34.4		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	FD	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	3.34	F	μg/L	5	0.9
		SW8260	Dibromochloromethane	124-48-1	FD	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	FD	0.11	U	μg/L	1	0.11
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Dichlorodifluoromethane	75-71-8	FD	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	FD	80.0	U	μg/L	1	0.08
		SW8260	Ethylbenzene	100-41-4	N	80.0	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Hexachlorobutadiene	87-68-3	FD	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	80.0	U	μg/L	1	0.08
		SW8260	Isopropylbenzene	98-82-8	FD	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	m,p-Xylene	108-38-3/1	FD	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	MEK (2-Butanone)	78-93-3	FD	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	FD	0.15	U	μg/L	5	0.15
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	FD	0.2	U	μg/L	1	0.2
		SW8260	Methylene Chloride	75-09-2	Ν	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	FD	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	Naphthalene	91-20-3	FD	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	FD	0.09	U	μg/L	1	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
ite 10 EISB Treatment Syster	m – Performance Monitor	ing Well Results								
0M006MW	1/18/2005	SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	n-Propylbenzene	103-65-1	FD	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	o-Xylene	95-47-6	FD	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	FD	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	sec-Butylbenzene	135-98-8	FD	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	FD	0.08	U	μg/L	1	0.08
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	FD	157		μg/L	10	0.99
		SW8260	TCE	79-01-6	N	157		μg/L	10	0.99
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tert-Butylbenzene	98-06-6	FD	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	1.98		μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	FD	1.93		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	Toluene	108-88-3	FD	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	FD	0.11	F	μg/L	1	0.09
		SW8260	trans-1,2-DCE	156-60-5	N	0.1	F	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	FD	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	FD	0.17	U	μg/L	1	0.17
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	FD	0.21	U	μg/L	1	0.21
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
		SW9056	Chloride	CHLORIDE	FD	2.77		mg/L	1	0.011
		SW9056	Chloride	CHLORIDE	N	2.85		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	FD	2.55		mg/L	1	0.0022
		SW9056	Nitrate-N	NITRATE	N	2.51		mg/L	1	0.0022
		SW9056		Phosphate	N	0.013	U	_	1	0.013
		SW9056	Phosphate	Phosphate	FD	0.055	F		1	0.013
ND gala Databasa V TONVA salutica V 2002. A	And the section of th	SW9056 SW9056	Phosphate	Phosphate	N	0.013			U mg/L F mg/L	U mg/L 1

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M006MW	1/18/2005	SW9056	Sulfate	SULFATE	N	5.27		mg/L	1	0.008
		SW9056	Sulfate	SULFATE	FD	5.35		mg/L	1	0.008
	3/22/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.035	U	μg/L	0.84	0.035
		RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.85	0.035
		RSK-175	Methane	74-82-8	N	0.15	F	μg/L	0.63	0.02
		SW6010	Iron, dissolved	7439-89-6_D	N	0.013	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0009	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Performance Monitor	ing Well Results								
10M006MW	3/22/2005	SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.15	F	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	25.3		μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Performance Monitori	ing Well Results								
10M006MW	3/22/2005	SW8260	TCE	79-01-6	N	139		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	1.76		μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.12	F	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
		SW9030	Sulfide	SULFIDE	N	1.8	F	mg/L	2	0.97
		SW9056	Chloride	CHLORIDE	N	2.68		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	N	2.44		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.051	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	4.1		mg/L	1	0.008

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resu	lts								
10C030RW	1/19/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.038	U	μg/L	0.91	0.038
		RSK-175	Ethene	74-85-1	Ν	0.038	U	μg/L	0.91	0.038
		RSK-175	Methane	74-82-8	N	0.21	F	μg/L	0.69	0.022
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	N	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	N	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	80.0	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	1.8	F	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C030RW	1/19/2005	SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.56		μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	393		μg/L	50	4.76
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.1	U	μg/L	10	0.1
		SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	180		μg/L	50	4.93
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	7		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Extraction Well Resul	ts								
10C030RW	1/19/2005	SW8260	trans-1,2-DCE	156-60-5	N	1.16		μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	3/23/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.036	U	μg/L	0.87	0.036
		RSK-175	Ethene	74-85-1	N	0.036	U	μg/L	0.88	0.036
		RSK-175	Methane	74-82-8	N	0.19	F	μg/L	0.65	0.021
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	80.0	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	N	80.0	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09
		SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L		0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C030RW	3/23/2005	SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.59		μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	323		μg/L	50	2.87
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1
		SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Extraction Well Result	ts								
10C030RW	3/23/2005	SW8260	TCE	79-01-6	N	212		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	Ν	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	Ν	15.3		μg/L	1	80.0
		SW8260	Toluene	108-88-3	Ν	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	2.04		μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	Ν	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09
10C031RW	1/19/2005	E300.0M	Acetic Acid	64-19-7	Ν	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	N	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	N	0.034	U	μg/L	0.82	0.034
		RSK-175	Ethene	74-85-1	N	0.034	U	μg/L	0.83	0.034
		RSK-175	Methane	74-82-8	N	0.25	F	μg/L	0.62	0.02
		SW6010	Iron, dissolved	7439-89-6_D	N	0.019	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0022	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.57	U	μg/L	5	0.57
		SW8260	1,1,1-TCA	71-55-6	N	0.77	U	μg/L	10	0.77
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.57	U	μg/L	5	0.57
		SW8260	1,1,2-TCA	79-00-5	N	0.73	U	μg/L	10	0.73
		SW8260	1,1-DCA	75-34-3	N	0.59	U	μg/L	10	0.59
		SW8260	1,1-DCE	75-35-4	N	0.75	U	μg/L	10	0.75
		SW8260	1,1-Dichloropropene	563-58-6	N	0.54	U	μg/L	10	0.54
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.89	U	μg/L	10	0.89
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.77	U	μg/L	10	0.77
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.65	U	μg/L	10	0.65
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.46	U	μg/L	10	0.46
		SW8260	1,2-DCA	107-06-2	N	0.87	U	μg/L	5	0.87
		SW8260	1,2-DCB	95-50-1	N	0.6	U	μg/L	10	0.6
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	1.17	U	μg/L	20	1.17
		SW8260	1,2-Dichloropropane	78-87-5	N	0.4	U	μg/L	10	0.4
		SW8260	1,2-EDB	106-93-4	N	0.75	U	μg/L	10	0.75
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.59	U	μg/L	10	0.59
0.10 1.10 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.			-						TA OLUMENIT DO	

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C031RW	1/19/2005	SW8260	1,3-DCB	541-73-1	N	0.65	U	μg/L	10	0.65
		SW8260	1,3-Dichloropropane	142-28-9	N	0.5	U	μg/L	4	0.5
		SW8260	1,4-DCB	106-46-7	N	0.68	U	μg/L	5	0.68
		SW8260	1-Chlorohexane	544-10-5	N	0.57	U	μg/L	10	0.57
		SW8260	2,2-Dichloropropane	594-20-7	N	0.91	U	μg/L	10	0.91
		SW8260	2-Chlorotoluene	95-49-8	N	0.56	U	μg/L	10	0.56
		SW8260	4-Chlorotoluene	106-43-4	N	0.59	U	μg/L	10	0.59
		SW8260	Acetone	67-64-1	N	4.7	U	μg/L	100	4.7
		SW8260	Benzene	71-43-2	N	0.62	U	μg/L	4	0.62
		SW8260	Bromobenzene	108-86-1	N	0.74	U	μg/L	10	0.74
		SW8260	Bromochloromethane	74-97-5	N	0.92	U	μg/L	10	0.92
		SW8260	Bromodichloromethane	75-27-4	N	0.72	U	μg/L	5	0.72
		SW8260	Bromoform	75-25-2	N	0.83	U	μg/L	10	0.83
		SW8260	Bromomethane	74-83-9	N	1.02	U	μg/L	30	1.02
		SW8260	Carbon Tetrachloride	56-23-5	N	0.56	U	μg/L	10	0.56
		SW8260	Chlorobenzene	108-90-7	N	0.7	U	μg/L	5	0.7
		SW8260	Chloroethane	75-00-3	N	0.31	U	μg/L	10	0.31
		SW8260	Chloroform	67-66-3	N	1.38	F	μg/L	3	0.87
		SW8260	Chloromethane	74-87-3	N	0.41	U	μg/L	10	0.41
		SW8260	cis-1,2-DCE	156-59-2	N	107		μg/L	10	0.57
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.7	U	μg/L	5	0.7
		SW8260	Dibromochloromethane	124-48-1	N	0.31	U	μg/L	5	0.31
		SW8260	Dibromomethane	74-95-3	N	0.85	U	μg/L	10	0.85
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.54	U	μg/L	10	0.54
		SW8260	Ethylbenzene	100-41-4	N	0.56	U	μg/L	10	0.56
		SW8260	Hexachlorobutadiene	87-68-3	N	0.75	U	μg/L	6	0.75
		SW8260	Isopropylbenzene	98-82-8	N	0.5	U	μg/L	10	0.5
		SW8260	m,p-Xylene	108-38-3/1	N	0.99	U	μg/L	20	0.99
		SW8260	MEK (2-Butanone)	78-93-3	N	2.9	U	μg/L	100	2.9
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.57	U	μg/L	50	0.57
		SW8260	Methylene Chloride	75-09-2	N	0.67	U	μg/L	10	0.67
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	1.9	U	μg/L	100	1.9
		SW8260	Naphthalene	91-20-3	N	0.66	U	μg/L	10	0.66

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C031RW	1/19/2005	SW8260	n-Butylbenzene	104-51-8	N	0.6	U	μg/L	10	0.6
		SW8260	n-Propylbenzene	103-65-1	N	0.5	U	μg/L	10	0.5
		SW8260	o-Xylene	95-47-6	N	0.6	U	μg/L	10	0.6
		SW8260	p-Isopropyltoluene	99-87-6	Ν	0.42	U	μg/L	10	0.42
		SW8260	sec-Butylbenzene	135-98-8	N	0.57	U	μg/L	10	0.57
		SW8260	Styrene	100-42-5	N	0.5	U	μg/L	10	0.5
		SW8260	TCE	79-01-6	N	3340		μg/L	100	7.14
		SW8260	Tert-Butylbenzene	98-06-6	N	0.57	U	μg/L	10	0.57
		SW8260	Tetrachloroethylene	127-18-4	N	231		μg/L	10	0.77
		SW8260	Toluene	108-88-3	N	0.57	U	μg/L	10	0.57
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.73	U	μg/L	10	0.73
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.54	U	μg/L	10	0.54
		SW8260	Trichlorofluoromethane	75-69-4	N	0.65	U	μg/L	10	0.65
		SW8260	Vinyl Chloride	75-01-4	N	0.94	U	μg/L	10	0.94
		SW9056	Chloride	CHLORIDE	N	12		mg/L	2	0.023
		SW9056	Nitrate-N	NITRATE	N	1.88		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.036	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	6.98		mg/L	1	0.008
	3/23/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.037	U	μg/L	0.88	0.037
		RSK-175	Ethene	74-85-1	N	0.037	U	μg/L	0.89	0.037
		RSK-175	Methane	74-82-8	N	0.22	F	μg/L	0.66	0.021
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.57	U	μg/L	5	0.57
		SW8260	1,1,1-TCA	71-55-6	N	0.77	U	μg/L	10	0.77
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.57	U	μg/L	5	0.57
		SW8260	1,1,2-TCA	79-00-5	N	0.73	U	μg/L	10	0.73
		SW8260	1,1-DCA	75-34-3	N	0.59	U	μg/L	10	0.59
		SW8260	1,1-DCE	75-35-4	N	0.75	U	μg/L	10	0.75
		SW8260	1,1-Dichloropropene	563-58-6	N	0.54	U	μg/L	10	0.54
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.89	U	μg/L	10	0.89
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.77	U	μg/L	10	0.77

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C031RW	3/23/2005	SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.65	U	μg/L	10	0.65
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.46	U	μg/L	10	0.46
		SW8260	1,2-DCA	107-06-2	Ν	0.87	U	μg/L	5	0.87
		SW8260	1,2-DCB	95-50-1	N	0.6	U	μg/L	10	0.6
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	1.17	U	μg/L	20	1.17
		SW8260	1,2-Dichloropropane	78-87-5	Ν	0.4	U	μg/L	10	0.4
		SW8260	1,2-EDB	106-93-4	Ν	0.75	U	μg/L	10	0.75
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.59	U	μg/L	10	0.59
		SW8260	1,3-DCB	541-73-1	Ν	0.65	U	μg/L	10	0.65
		SW8260	1,3-Dichloropropane	142-28-9	Ν	0.5	U	μg/L	4	0.5
		SW8260	1,4-DCB	106-46-7	Ν	0.68	U	μg/L	5	0.68
		SW8260	1-Chlorohexane	544-10-5	N	0.57	U	μg/L	10	0.57
		SW8260	2,2-Dichloropropane	594-20-7	Ν	0.91	U	μg/L	10	0.91
		SW8260	2-Chlorotoluene	95-49-8	Ν	0.56	U	μg/L	10	0.56
		SW8260	4-Chlorotoluene	106-43-4	Ν	0.59	U	μg/L	10	0.59
		SW8260	Acetone	67-64-1	Ν	4.7	U	μg/L	100	4.7
		SW8260	Benzene	71-43-2	N	0.62	U	μg/L	4	0.62
		SW8260	Bromobenzene	108-86-1	Ν	0.74	U	μg/L	10	0.74
		SW8260	Bromochloromethane	74-97-5	Ν	0.92	U	μg/L	10	0.92
		SW8260	Bromodichloromethane	75-27-4	Ν	0.72	U	μg/L	5	0.72
		SW8260	Bromoform	75-25-2	N	0.83	U	μg/L	10	0.83
		SW8260	Bromomethane	74-83-9	N	1.02	U	μg/L	30	1.02
		SW8260	Carbon Tetrachloride	56-23-5	N	0.56	U	μg/L	10	0.56
		SW8260	Chlorobenzene	108-90-7	N	0.7	U	μg/L	5	0.7
		SW8260	Chloroethane	75-00-3	N	0.31	U	μg/L	10	0.31
		SW8260	Chloroform	67-66-3	N	0.87	U	μg/L	3	0.87
		SW8260	Chloromethane	74-87-3	N	0.41	U	μg/L	10	0.41
		SW8260	cis-1,2-DCE	156-59-2	N	176		μg/L	10	0.57
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.7	U	μg/L	5	0.7
		SW8260	Dibromochloromethane	124-48-1	N	0.31	U	μg/L	5	0.31
		SW8260	Dibromomethane	74-95-3	N	0.85	U	μg/L	10	0.85
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.54	U	μg/L	10	0.54
		SW8260	Ethylbenzene	100-41-4	N	0.56	U	μg/L	10	0.56

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Extraction Well Result	s								
10C031RW	3/23/2005	SW8260	Hexachlorobutadiene	87-68-3	N	0.75	U	μg/L	6	0.75
		SW8260	Isopropylbenzene	98-82-8	Ν	0.5	U	μg/L	10	0.5
		SW8260	m,p-Xylene	108-38-3/1	N	0.99	U	μg/L	20	0.99
		SW8260	MEK (2-Butanone)	78-93-3	Ν	2.9	U	μg/L	100	2.9
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	0.57	U	μg/L	50	0.57
		SW8260	Methylene Chloride	75-09-2	N	0.67	U	μg/L	10	0.67
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	1.9	U	μg/L	100	1.9
		SW8260	Naphthalene	91-20-3	N	0.66	U	μg/L	10	0.66
		SW8260	n-Butylbenzene	104-51-8	Ν	0.6	U	μg/L	10	0.6
		SW8260	n-Propylbenzene	103-65-1	N	0.5	U	μg/L	10	0.5
		SW8260	o-Xylene	95-47-6	Ν	0.6	U	μg/L	10	0.6
		SW8260	p-Isopropyltoluene	99-87-6	Ν	0.42	U	μg/L	10	0.42
		SW8260	sec-Butylbenzene	135-98-8	N	0.57	U	μg/L	10	0.57
		SW8260	Styrene	100-42-5	N	0.5	U	μg/L	10	0.5
		SW8260	TCE	79-01-6	Ν	2920		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.57	U	μg/L	10	0.57
		SW8260	Tetrachloroethylene	127-18-4	Ν	190		μg/L	10	0.77
		SW8260	Toluene	108-88-3	N	0.57	U	μg/L	10	0.57
		SW8260	trans-1,2-DCE	156-60-5	Ν	0.73	U	μg/L	10	0.73
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.54	U	μg/L	10	0.54
		SW8260	Trichlorofluoromethane	75-69-4	N	0.65	U	μg/L	10	0.65
		SW8260	Vinyl Chloride	75-01-4	N	0.94	U	μg/L	10	0.94
10C032RW	1/19/2005	E300.0M	Acetic Acid	64-19-7	Ν	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	Ν	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	Ν	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	Ν	0.064	F	μg/L	0.78	0.032
		RSK-175	Ethene	74-85-1	Ν	0.033	U	μg/L	0.79	0.033
		RSK-175	Methane	74-82-8	Ν	0.34	F	μg/L	0.59	0.019
		SW6010	Iron, dissolved	7439-89-6_D	N	0.011	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0049	F	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.92	U	μg/L	5	0.92
		SW8260	1,1,1-TCA	71-55-6	Ν	1.06	U	μg/L	10	1.06
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	1.14	U	μg/L	5	1.14

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C032RW	1/19/2005	SW8260	1,1,2-TCA	79-00-5	N	1.37	U	μg/L	10	1.37
		SW8260	1,1-DCA	75-34-3	Ν	1.32	U	μg/L	10	1.32
		SW8260	1,1-DCE	75-35-4	N	1.25	U	μg/L	10	1.25
		SW8260	1,1-Dichloropropene	563-58-6	N	0.7	U	μg/L	10	0.7
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.75	U	μg/L	10	0.75
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	1.09	U	μg/L	10	1.09
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.78	U	μg/L	10	0.78
		SW8260	1,2,4-Trimethylbenzene	95-63-6	Ν	0.73	U	μg/L	10	0.73
		SW8260	1,2-DCA	107-06-2	Ν	1.01	U	μg/L	5	1.01
		SW8260	1,2-DCB	95-50-1	Ν	1.07	U	μg/L	10	1.07
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	Ν	1.16	U	μg/L	20	1.16
		SW8260	1,2-Dichloropropane	78-87-5	Ν	1.19	U	μg/L	10	1.19
		SW8260	1,2-EDB	106-93-4	Ν	0.86	U	μg/L	10	0.86
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.85	U	μg/L	10	0.85
		SW8260	1,3-DCB	541-73-1	Ν	1.03	U	μg/L	10	1.03
		SW8260	1,3-Dichloropropane	142-28-9	Ν	0.87	U	μg/L	4	0.87
		SW8260	1,4-DCB	106-46-7	Ν	1.33	U	μg/L	5	1.33
		SW8260	1-Chlorohexane	544-10-5	Ν	0.63	U	μg/L	10	0.63
		SW8260	2,2-Dichloropropane	594-20-7	Ν	1.16	U	μg/L	10	1.16
		SW8260	2-Chlorotoluene	95-49-8	N	0.83	U	μg/L	10	0.83
		SW8260	4-Chlorotoluene	106-43-4	N	0.74	U	μg/L	10	0.74
		SW8260	Acetone	67-64-1	N	6.4	U	μg/L	100	6.4
		SW8260	Benzene	71-43-2	N	0.72	U	μg/L	4	0.72
		SW8260	Bromobenzene	108-86-1	N	1.1	U	μg/L	10	1.1
		SW8260	Bromochloromethane	74-97-5	N	1.32	U	μg/L	10	1.32
		SW8260	Bromodichloromethane	75-27-4	N	1.19	U	μg/L	5	1.19
		SW8260	Bromoform	75-25-2	N	1.82	F	μg/L	10	0.76
		SW8260	Bromomethane	74-83-9	N	2.28	U	μg/L	30	2.28
		SW8260	Carbon Tetrachloride	56-23-5	N	0.79	U	μg/L	10	0.79
		SW8260	Chlorobenzene	108-90-7	N	1.24	U	μg/L	5	1.24
		SW8260	Chloroethane	75-00-3	N	2.02	U	μg/L	10	2.02
		SW8260	Chloroform	67-66-3	N	2.26	F	μg/L	3	1.26
		SW8260	Chloromethane	74-87-3	N	1.45	U	μg/L	10	1.45

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Extraction Well Results	S								
10C032RW	1/19/2005	SW8260	cis-1,2-DCE	156-59-2	N	351		μg/L	10	0.95
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	1.03	U	μg/L	5	1.03
		SW8260	Dibromochloromethane	124-48-1	Ν	0.9	U	μg/L	5	0.9
		SW8260	Dibromomethane	74-95-3	Ν	1.15	U	μg/L	10	1.15
		SW8260	Dichlorodifluoromethane	75-71-8	Ν	1.32	U	μg/L	10	1.32
		SW8260	Ethylbenzene	100-41-4	N	0.79	U	μg/L	10	0.79
		SW8260	Hexachlorobutadiene	87-68-3	N	0.94	U	μg/L	6	0.94
		SW8260	Isopropylbenzene	98-82-8	N	0.78	U	μg/L	10	0.78
		SW8260	m,p-Xylene	108-38-3/1	Ν	1.37	U	μg/L	20	1.37
		SW8260	MEK (2-Butanone)	78-93-3	Ν	1.9	U	μg/L	100	1.9
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	Ν	1.5	U	μg/L	50	1.5
		SW8260	Methylene Chloride	75-09-2	Ν	1.98	U	μg/L	10	1.98
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	1.5	U	μg/L	100	1.5
		SW8260	Naphthalene	91-20-3	N	0.53	U	μg/L	10	0.53
		SW8260	n-Butylbenzene	104-51-8	N	0.88	U	μg/L	10	0.88
		SW8260	n-Propylbenzene	103-65-1	N	0.76	U	μg/L	10	0.76
		SW8260	o-Xylene	95-47-6	N	0.89	U	μg/L	10	0.89
		SW8260	p-Isopropyltoluene	99-87-6	N	0.9	U	μg/L	10	0.9
		SW8260	sec-Butylbenzene	135-98-8	N	0.75	U	μg/L	10	0.75
		SW8260	Styrene	100-42-5	Ν	0.82	U	μg/L	10	0.82
		SW8260	TCE	79-01-6	N	2720		μg/L	100	9.85
		SW8260	Tert-Butylbenzene	98-06-6	N	0.7	U	μg/L	10	0.7
		SW8260	Tetrachloroethylene	127-18-4	N	55.7		μg/L	10	0.72
		SW8260	Toluene	108-88-3	N	0.79	U	μg/L	10	0.79
		SW8260	trans-1,2-DCE	156-60-5	N	1.89	F	μg/L	10	0.94
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.66	U	μg/L	10	0.66
		SW8260	Trichlorofluoromethane	75-69-4	N	1.74	U	μg/L	10	1.74
		SW8260	Vinyl Chloride	75-01-4	N	2.09	U	μg/L	10	2.09
		SW9056	Chloride	CHLORIDE	N	9.79		mg/L	1	0.011
		SW9056	Nitrate-N	NITRATE	N	1.48		mg/L	1	0.0022
		SW9056	Phosphate	Phosphate	N	0.048	F	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	6.62		mg/L	1	0.008
	3/23/2005	RSK-175	Ethane	74-84-0	N	0.035	U	μg/L	0.85	0.035

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul				71.				-	
10C032RW	3/23/2005	RSK-175	Ethene	74-85-1	N	0.035	U	μg/L	0.85	0.035
		RSK-175	Methane	74-82-8	Ν	0.28	F	μg/L	0.64	0.02
		SW6010	Iron, dissolved	7439-89-6_D	N	0.014	F	mg/L	0.2	0.005
		SW6010	Manganese, dissolved	7439-96-5_D	N	0.0003	U	mg/L	0.01	0.0003
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.29	U	μg/L	2.5	0.29
		SW8260	1,1,1-TCA	71-55-6	N	0.39	U	μg/L	5	0.39
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.28	U	μg/L	2.5	0.28
		SW8260	1,1,2-TCA	79-00-5	N	0.36	U	μg/L	5	0.36
		SW8260	1,1-DCA	75-34-3	N	0.3	U	μg/L	5	0.3
		SW8260	1,1-DCE	75-35-4	N	0.37	U	μg/L	5	0.37
		SW8260	1,1-Dichloropropene	563-58-6	N	0.27	U	μg/L	5	0.27
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.44	U	μg/L	5	0.44
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.38	U	μg/L	5	0.38
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.23	U	μg/L	5	0.23
		SW8260	1,2-DCA	107-06-2	N	0.43	U	μg/L	2.5	0.43
		SW8260	1,2-DCB	95-50-1	N	0.3	U	μg/L	5	0.3
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.59	U	μg/L	10	0.59
		SW8260	1,2-Dichloropropane	78-87-5	N	0.2	U	μg/L	5	0.2
		SW8260	1,2-EDB	106-93-4	N	0.37	U	μg/L	5	0.37
		SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.3	U	μg/L	5	0.3
		SW8260	1,3-DCB	541-73-1	N	0.32	U	μg/L	5	0.32
		SW8260	1,3-Dichloropropane	142-28-9	N	0.25	U	μg/L	2	0.25
		SW8260	1,4-DCB	106-46-7	N	0.34	U	μg/L	2.5	0.34
		SW8260	1-Chlorohexane	544-10-5	N	0.29	U	μg/L	5	0.29
		SW8260	2,2-Dichloropropane	594-20-7	N	0.45	U	μg/L	5	0.45
		SW8260	2-Chlorotoluene	95-49-8	N	0.28	U	μg/L	5	0.28
		SW8260	4-Chlorotoluene	106-43-4	N	0.3	U	μg/L	5	0.3
		SW8260	Acetone	67-64-1	N	2.4	U	μg/L	50	2.4
		SW8260	Benzene	71-43-2	N	0.31	U	μg/L	2	0.31
		SW8260	Bromobenzene	108-86-1	N	0.37	U	μg/L	5	0.37
		SW8260	Bromochloromethane	74-97-5	N	0.46	U	μg/L	5	0.46
		SW8260	Bromodichloromethane	75-27-4	N	0.36	U	μg/L	2.5	0.36

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C032RW	3/23/2005	SW8260	Bromoform	75-25-2	N	0.42	U	μg/L	5	0.42
		SW8260	Bromomethane	74-83-9	N	0.51	U	μg/L	15	0.51
		SW8260	Carbon Tetrachloride	56-23-5	N	0.28	U	μg/L	5	0.28
		SW8260	Chlorobenzene	108-90-7	N	0.35	U	μg/L	2.5	0.35
		SW8260	Chloroethane	75-00-3	N	0.16	U	μg/L	5	0.16
		SW8260	Chloroform	67-66-3	N	1.5		μg/L	1.5	0.44
		SW8260	Chloromethane	74-87-3	N	0.2	U	μg/L	5	0.2
		SW8260	cis-1,2-DCE	156-59-2	N	223		μg/L	5	0.29
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.35	U	μg/L	2.5	0.35
		SW8260	Dibromochloromethane	124-48-1	N	0.16	U	μg/L	2.5	0.16
		SW8260	Dibromomethane	74-95-3	N	0.43	U	μg/L	5	0.43
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.27	U	μg/L	5	0.27
		SW8260	Ethylbenzene	100-41-4	N	0.28	U	μg/L	5	0.28
		SW8260	Hexachlorobutadiene	87-68-3	N	0.37	U	μg/L	3	0.37
		SW8260	Isopropylbenzene	98-82-8	N	0.25	U	μg/L	5	0.25
		SW8260	m,p-Xylene	108-38-3/1	N	0.5	U	μg/L	10	0.5
		SW8260	MEK (2-Butanone)	78-93-3	N	1.4	U	μg/L	50	1.4
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.29	U	μg/L	25	0.29
		SW8260	Methylene Chloride	75-09-2	N	0.33	U	μg/L	5	0.33
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.9	U	μg/L	50	0.9
		SW8260	Naphthalene	91-20-3	N	0.33	U	μg/L	5	0.33
		SW8260	n-Butylbenzene	104-51-8	N	0.3	U	μg/L	5	0.3
		SW8260	n-Propylbenzene	103-65-1	N	0.25	U	μg/L	5	0.25
		SW8260	o-Xylene	95-47-6	N	0.3	U	μg/L	5	0.3
		SW8260	p-Isopropyltoluene	99-87-6	N	0.21	U	μg/L	5	0.21
		SW8260	sec-Butylbenzene	135-98-8	N	0.28	U	μg/L	5	0.28
		SW8260	Styrene	100-42-5	N	0.25	U	μg/L	5	0.25
		SW8260	TCE	79-01-6	Ν	1830		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.28	U	μg/L	5	0.28
		SW8260	Tetrachloroethylene	127-18-4	N	66.1		μg/L	5	0.39
		SW8260	Toluene	108-88-3	N	0.28	U	μg/L	5	0.28
		SW8260	trans-1,2-DCE	156-60-5	N	0.77	F	μg/L	5	0.36
		SW8260	trans-1,3-Dichloropropene	10061-02-6	Ν	0.27	U	μg/L	5	0.27

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Results	3								
10C032RW	3/23/2005	SW8260	Trichlorofluoromethane	75-69-4	N	0.32	U	μg/L	5	0.32
		SW8260	Vinyl Chloride	75-01-4	N	0.47	U	μg/L	5	0.47
		SW9030	Sulfide	SULFIDE	N	1.4	F	mg/L	2	0.97
	3/31/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	Ν	0.011	U	mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		SW9056	Chloride	CHLORIDE	N	11.9		mg/L	2	0.022
		SW9056	Nitrate-N	NITRATE	Ν	1.7		mg/L	1	0.0022
		SW9056	Nitrite-N	NITRITE	N	0.0058	U	mg/L	1	0.0058
		SW9056	Phosphate	Phosphate	N	0.013	U	mg/L	1	0.013
		SW9056	Sulfate	SULFATE	N	8.09		mg/L	1	800.0
10C045RW	1/19/2005	E300.0M	Acetic Acid	64-19-7	N	0.021	U	mg/L	0.1	0.021
		E300.0M	Lactic Acid	50-21-5	N	0.0083	U	mg/L	0.1	0.0083
		E300.0M	Propionic Acid	79-09-4	Ν	0.01	U	mg/L	0.1	0.01
		RSK-175	Ethane	74-84-0	Ν	0.03	U	μg/L	0.72	0.03
		RSK-175	Ethene	74-85-1	Ν	0.03	U	μg/L	0.73	0.03
		RSK-175	Methane	74-82-8	Ν	0.2	F	μg/L	0.54	0.017
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	Ν	0.09	U	μg/L	0.5	0.09
		SW8260	1,1,1-TCA	71-55-6	Ν	0.11	U	μg/L	1	0.11
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	Ν	0.11	U	μg/L	0.5	0.11
		SW8260	1,1,2-TCA	79-00-5	Ν	0.14	U	μg/L	1	0.14
		SW8260	1,1-DCA	75-34-3	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-DCE	75-35-4	N	0.13	U	μg/L	1	0.13
		SW8260	1,1-Dichloropropene	563-58-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichlorobenzene	87-61-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2,3-Trichloropropane	96-18-4	N	0.11	U	μg/L	1	0.11
		SW8260	1,2,4-Trichlorobenzene	120-82-1	N	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.07	U	μg/L	1	0.07
		SW8260	1,2-DCA	107-06-2	N	0.1	U	μg/L	0.5	0.1
		SW8260	1,2-DCB	95-50-1	N	0.11	U	μg/L	1	0.11
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.12	U	μg/L	1	0.12
		SW8260	1,2-EDB	106-93-4	N	0.09	U	μg/L	1	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005

LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C045RW	1/19/2005	SW8260	1,3,5-Trimethylbenzene	108-67-8	N	0.08	U	μg/L	1	0.08
		SW8260	1,3-DCB	541-73-1	N	0.1	U	μg/L	1	0.1
		SW8260	1,3-Dichloropropane	142-28-9	N	0.09	U	μg/L	0.4	0.09
		SW8260	1,4-DCB	106-46-7	N	0.13	U	μg/L	0.5	0.13
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.12	U	μg/L	1	0.12
		SW8260	2-Chlorotoluene	95-49-8	N	0.08	U	μg/L	1	0.08
		SW8260	4-Chlorotoluene	106-43-4	N	0.07	U	μg/L	1	0.07
		SW8260	Acetone	67-64-1	N	0.6	U	μg/L	10	0.6
		SW8260	Benzene	71-43-2	N	0.07	U	μg/L	0.4	0.07
		SW8260	Bromobenzene	108-86-1	N	0.11	U	μg/L	1	0.11
		SW8260	Bromochloromethane	74-97-5	N	0.13	U	μg/L	1	0.13
		SW8260	Bromodichloromethane	75-27-4	N	0.12	U	μg/L	0.5	0.12
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.23	U	μg/L	3	0.23
		SW8260	Carbon Tetrachloride	56-23-5	N	0.08	U	μg/L	1	0.08
		SW8260	Chlorobenzene	108-90-7	N	0.12	U	μg/L	0.5	0.12
		SW8260	Chloroethane	75-00-3	N	0.2	U	μg/L	1	0.2
		SW8260	Chloroform	67-66-3	N	0.2	F	μg/L	0.3	0.13
		SW8260	Chloromethane	74-87-3	N	0.15	U	μg/L	1	0.15
		SW8260	cis-1,2-DCE	156-59-2	N	36.9		μg/L	1	0.1
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.1	U	μg/L	0.5	0.1
		SW8260	Dibromochloromethane	124-48-1	N	0.09	U	μg/L	0.5	0.09
		SW8260	Dibromomethane	74-95-3	N	0.11	U	μg/L	1	0.11
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.13	U	μg/L	1	0.13
		SW8260	Ethylbenzene	100-41-4	N	0.08	U	μg/L	1	0.08
		SW8260	Hexachlorobutadiene	87-68-3	N	0.09	U	μg/L	0.6	0.09
		SW8260	Isopropylbenzene	98-82-8	N	0.08	U	μg/L	1	0.08
		SW8260	m,p-Xylene	108-38-3/1	N	0.14	U	μg/L	2	0.14
		SW8260	MEK (2-Butanone)	78-93-3	N	0.2	U	μg/L	10	0.2
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.15	U	μg/L	5	0.15
		SW8260	Methylene Chloride	75-09-2	N	0.2	U	μg/L	1	0.2
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	Ν	0.1	U	μg/L	10	0.1

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System	- Extraction Well Results									
10C045RW	1/19/2005	SW8260	Naphthalene	91-20-3	N	0.05	U	μg/L	1	0.05
		SW8260	n-Butylbenzene	104-51-8	N	0.09	U	μg/L	1	0.09
		SW8260	n-Propylbenzene	103-65-1	N	0.08	U	μg/L	1	0.08
		SW8260	o-Xylene	95-47-6	N	0.09	U	μg/L	1	0.09
		SW8260	p-Isopropyltoluene	99-87-6	N	0.09	U	μg/L	1	0.09
		SW8260	sec-Butylbenzene	135-98-8	N	0.07	U	μg/L	1	0.07
		SW8260	Styrene	100-42-5	N	0.08	U	μg/L	1	0.08
		SW8260	TCE	79-01-6	N	169		μg/L	50	4.93
		SW8260	Tert-Butylbenzene	98-06-6	N	0.07	U	μg/L	1	0.07
		SW8260	Tetrachloroethylene	127-18-4	N	2.12		μg/L	1	0.07
		SW8260	Toluene	108-88-3	N	0.08	U	μg/L	1	0.08
		SW8260	trans-1,2-DCE	156-60-5	N	0.13	F	μg/L	1	0.09
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.07	U	μg/L	1	0.07
		SW8260	Trichlorofluoromethane	75-69-4	N	0.17	U	μg/L	1	0.17
		SW8260	Vinyl Chloride	75-01-4	N	0.21	U	μg/L	1	0.21
	3/23/2005	E300.0M	Acetic Acid	64-19-7	N	0.0077	U	mg/L	0.1	0.0077
		E300.0M	Lactic Acid	50-21-5	N	1.49		mg/L	0.1	0.011
		E300.0M	Propionic Acid	79-09-4	N	0.0091	U	mg/L	0.1	0.0091
		RSK-175	Ethane	74-84-0	N	0.036	U	μg/L	0.88	0.036
		RSK-175	Ethene	74-85-1	N	0.037	U	μg/L	0.88	0.037
		RSK-175	Methane	74-82-8	N	0.13	F	μg/L	0.66	0.021
		SW8260	1,1,1,2-Tetrachloroethane	630-20-6	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,1-TCA	71-55-6	N	0.08	U	μg/L	1	0.08
		SW8260	1,1,2,2-Tetrachloroethane	79-34-5	N	0.06	U	μg/L	0.5	0.06
		SW8260	1,1,2-TCA	79-00-5	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-DCA	75-34-3	N	0.06	U	μg/L	1	0.06
		SW8260	1,1-DCE	75-35-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,1-Dichloropropene	563-58-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2,3-Trichlorobenzene	87-61-6	Ν	0.09	U	μg/L	1	0.09
		SW8260	1,2,3-Trichloropropane	96-18-4	Ν	0.08	U	μg/L	1	0.08
		SW8260	1,2,4-Trichlorobenzene	120-82-1	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,2,4-Trimethylbenzene	95-63-6	N	0.05	U	μg/L	1	0.05
		SW8260	1,2-DCA	107-06-2	N	0.09	U	μg/L	0.5	0.09

ATTACHMENT B2
Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005
LTO&M First Quarter 2005 Report, Beale Air Force Base, California – Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C045RW	3/23/2005	SW8260	1,2-DCB	95-50-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,2-Dibromo-3-chloropropane	96-12-8	N	0.12	U	μg/L	2	0.12
		SW8260	1,2-Dichloropropane	78-87-5	N	0.04	U	μg/L	1	0.04
		SW8260	1,2-EDB	106-93-4	N	0.07	U	μg/L	1	0.07
		SW8260	1,3,5-Trimethylbenzene	108-67-8	Ν	0.06	U	μg/L	1	0.06
		SW8260	1,3-DCB	541-73-1	N	0.06	U	μg/L	1	0.06
		SW8260	1,3-Dichloropropane	142-28-9	N	0.05	U	μg/L	0.4	0.05
		SW8260	1,4-DCB	106-46-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	1-Chlorohexane	544-10-5	N	0.06	U	μg/L	1	0.06
		SW8260	2,2-Dichloropropane	594-20-7	N	0.09	U	μg/L	1	0.09
		SW8260	2-Chlorotoluene	95-49-8	N	0.06	U	μg/L	1	0.06
		SW8260	4-Chlorotoluene	106-43-4	N	0.06	U	μg/L	1	0.06
		SW8260	Acetone	67-64-1	N	0.5	U	μg/L	10	0.5
		SW8260	Benzene	71-43-2	N	0.06	U	μg/L	0.4	0.06
		SW8260	Bromobenzene	108-86-1	N	0.07	U	μg/L	1	0.07
		SW8260	Bromochloromethane	74-97-5	N	0.09	U	μg/L	1	0.09
		SW8260	Bromodichloromethane	75-27-4	N	0.07	U	μg/L	0.5	0.07
		SW8260	Bromoform	75-25-2	N	0.08	U	μg/L	1	0.08
		SW8260	Bromomethane	74-83-9	N	0.1	U	μg/L	3	0.1
		SW8260	Carbon Tetrachloride	56-23-5	N	0.06	U	μg/L	1	0.06
		SW8260	Chlorobenzene	108-90-7	N	0.07	U	μg/L	0.5	0.07
		SW8260	Chloroethane	75-00-3	N	0.03	U	μg/L	1	0.03
		SW8260	Chloroform	67-66-3	N	0.16	F	μg/L	0.3	0.09
		SW8260	Chloromethane	74-87-3	N	0.04	U	μg/L	1	0.04
		SW8260	cis-1,2-DCE	156-59-2	N	27.6		μg/L	1	0.06
		SW8260	cis-1,3-Dichloropropene	10061-01-5	N	0.07	U	μg/L	0.5	0.07
		SW8260	Dibromochloromethane	124-48-1	N	0.03	U	μg/L	0.5	0.03
		SW8260	Dibromomethane	74-95-3	N	0.09	U	μg/L	1	0.09
		SW8260	Dichlorodifluoromethane	75-71-8	N	0.05	U	μg/L	1	0.05
		SW8260	Ethylbenzene	100-41-4	N	0.06	U	μg/L	1	0.06
		SW8260	Hexachlorobutadiene	87-68-3	N	0.07	U	μg/L	0.6	0.07
		SW8260	Isopropylbenzene	98-82-8	N	0.05	U	μg/L	1	0.05
		SW8260	m,p-Xylene	108-38-3/1	N	0.1	U	μg/L	2	0.1

ATTACHMENT B2 Summary of Site 10 EISB Treatment System Analytical Data, First Quarter 2005 LTO&M First Quarter 2005 Report, Beale Air Force Base, California - Site 10 EISB Treatment System Monitoring Data

Sample Location	Sample Date	Method	Analyte	CAS No.	QA/QC Type	Result	Flag	Units	Reporting Limit	Method Detection Limit
Site 10 EISB Treatment System -	- Extraction Well Resul	ts								
10C045RW	3/23/2005	SW8260	MEK (2-Butanone)	78-93-3	N	0.3	U	μg/L	10	0.3
		SW8260	Methyl t-butyl ether (MtBE)	1634-04-4	N	0.06	U	μg/L	5	0.06
		SW8260	Methylene Chloride	75-09-2	N	0.07	U	μg/L	1	0.07
		SW8260	MIBK (methyl isobutyl ketone)	108-10-1	N	0.2	U	μg/L	10	0.2
		SW8260	Naphthalene	91-20-3	N	0.07	U	μg/L	1	0.07
		SW8260	n-Butylbenzene	104-51-8	N	0.06	U	μg/L	1	0.06
		SW8260	n-Propylbenzene	103-65-1	N	0.05	U	μg/L	1	0.05
		SW8260	o-Xylene	95-47-6	N	0.06	U	μg/L	1	0.06
		SW8260	p-Isopropyltoluene	99-87-6	N	0.04	U	μg/L	1	0.04
		SW8260	sec-Butylbenzene	135-98-8	N	0.06	U	μg/L	1	0.06
		SW8260	Styrene	100-42-5	N	0.05	U	μg/L	1	0.05
		SW8260	TCE	79-01-6	N	124		μg/L	50	3.57
		SW8260	Tert-Butylbenzene	98-06-6	N	0.06	U	μg/L	1	0.06
		SW8260	Tetrachloroethylene	127-18-4	N	1.66		μg/L	1	0.08
		SW8260	Toluene	108-88-3	N	0.06	U	μg/L	1	0.06
		SW8260	trans-1,2-DCE	156-60-5	N	0.15	F	μg/L	1	0.07
		SW8260	trans-1,3-Dichloropropene	10061-02-6	N	0.05	U	μg/L	1	0.05
		SW8260	Trichlorofluoromethane	75-69-4	N	0.06	U	μg/L	1	0.06
		SW8260	Vinyl Chloride	75-01-4	N	0.09	U	μg/L	1	0.09

Notes:

U = Not Detected.

FD = Field Duplicate.

N = Normal Sample.

Qualifier Description

B = The analyte was found in an associated blank, as well as in the sample.
F = The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

J = The analyte was positively identified, the quantitation is an estimate.

M = A matrix effect was present.